使用上下文驱动的社会信息的社会标签推荐的混合框架

G. Deepak, Sheeba Priyadarshini
{"title":"使用上下文驱动的社会信息的社会标签推荐的混合框架","authors":"G. Deepak, Sheeba Priyadarshini","doi":"10.1504/IJSCCPS.2017.10005809","DOIUrl":null,"url":null,"abstract":"Tagging images uploaded on the web is important as tags serve as the primary entities for future retrieval of these images. The numbers of images uploaded to the web via social networking sites is increasing in the era of smart phone technology and the internet. These images need to be tagged correctly which would ease its future retrieval. With the emergence of the Web 3.0 which is a standard for semantic web, a semantic tag recommender is desirable. In this paper, a context aware social tagger is proposed which recommends high quality tags by using varied contexts of social information. A semantic collaborative filtering strategy is proposed to make the social tagger semantics compliant. The social tagger also encompasses an intelligent agent, driven by second order co-occurrence pointwise mutual information strategy to increase the relevance and quality of the recommended tags. The proposed social tagger yields an average accuracy of 84.04%.","PeriodicalId":220482,"journal":{"name":"Int. J. Soc. Comput. Cyber Phys. Syst.","volume":"291 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"A hybrid framework for social tag recommendation using context driven social information\",\"authors\":\"G. Deepak, Sheeba Priyadarshini\",\"doi\":\"10.1504/IJSCCPS.2017.10005809\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tagging images uploaded on the web is important as tags serve as the primary entities for future retrieval of these images. The numbers of images uploaded to the web via social networking sites is increasing in the era of smart phone technology and the internet. These images need to be tagged correctly which would ease its future retrieval. With the emergence of the Web 3.0 which is a standard for semantic web, a semantic tag recommender is desirable. In this paper, a context aware social tagger is proposed which recommends high quality tags by using varied contexts of social information. A semantic collaborative filtering strategy is proposed to make the social tagger semantics compliant. The social tagger also encompasses an intelligent agent, driven by second order co-occurrence pointwise mutual information strategy to increase the relevance and quality of the recommended tags. The proposed social tagger yields an average accuracy of 84.04%.\",\"PeriodicalId\":220482,\"journal\":{\"name\":\"Int. J. Soc. Comput. Cyber Phys. Syst.\",\"volume\":\"291 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Soc. Comput. Cyber Phys. Syst.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJSCCPS.2017.10005809\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Soc. Comput. Cyber Phys. Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJSCCPS.2017.10005809","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

标记上传到网络上的图像是很重要的,因为标签是将来检索这些图像的主要实体。在智能手机技术和互联网时代,通过社交网站上传图片的数量正在增加。这些图像需要被正确地标记,以便将来检索。随着语义网标准Web 3.0的出现,一个语义标签推荐器是我们所需要的。本文提出了一种上下文感知的社会标签器,它可以利用不同的社会信息上下文来推荐高质量的标签。提出了一种语义协同过滤策略,使社交标注器语义兼容。社会标签器还包含一个智能代理,由二阶共现点互信息策略驱动,以提高推荐标签的相关性和质量。所提出的社会标注器的平均准确率为84.04%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A hybrid framework for social tag recommendation using context driven social information
Tagging images uploaded on the web is important as tags serve as the primary entities for future retrieval of these images. The numbers of images uploaded to the web via social networking sites is increasing in the era of smart phone technology and the internet. These images need to be tagged correctly which would ease its future retrieval. With the emergence of the Web 3.0 which is a standard for semantic web, a semantic tag recommender is desirable. In this paper, a context aware social tagger is proposed which recommends high quality tags by using varied contexts of social information. A semantic collaborative filtering strategy is proposed to make the social tagger semantics compliant. The social tagger also encompasses an intelligent agent, driven by second order co-occurrence pointwise mutual information strategy to increase the relevance and quality of the recommended tags. The proposed social tagger yields an average accuracy of 84.04%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信