面向分布式数据流管理系统的动态资源分配框架

Chunkai Wang, Xiaofeng Meng, Qi Guo, Zujian Weng, Chen Yang
{"title":"面向分布式数据流管理系统的动态资源分配框架","authors":"Chunkai Wang, Xiaofeng Meng, Qi Guo, Zujian Weng, Chen Yang","doi":"10.1145/2983323.2983681","DOIUrl":null,"url":null,"abstract":"Distributed data stream management systems (DDSMS) are usually composed of upper layer relational query systems (RQS) and lower layer stream processing systems (SPS). When users submit new queries to RQS, a query planner needs to be converted into a directed acyclic graph (DAG) consisting of tasks which are running on SPS. Based on different query requests and data stream properties, SPS need to configure different deployments strategies. However, how to dynamically predict deployment configurations of SPS to ensure the processing throughput and low resource usage is a great challenge. This article presents OrientStream, a framework for dynamic resource allocation in DDSMS using incremental machine learning techniques. By introducing the data-level, query plan-level, operator-level and cluster-level's four-level feature extraction mechanism, we firstly use the different query workloads as training sets to predict the resource usage of DDSMS and then select the optimal resource configuration from candidate settings based on the current query requests and stream properties. Finally, we validate our approach on the open source SPS--Storm. Experiments show that OrientStream can reduce CPU usage of 8%-15% and memory usage of 38%-48% respectively.","PeriodicalId":250808,"journal":{"name":"Proceedings of the 25th ACM International on Conference on Information and Knowledge Management","volume":"92 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"OrientStream: A Framework for Dynamic Resource Allocation in Distributed Data Stream Management Systems\",\"authors\":\"Chunkai Wang, Xiaofeng Meng, Qi Guo, Zujian Weng, Chen Yang\",\"doi\":\"10.1145/2983323.2983681\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Distributed data stream management systems (DDSMS) are usually composed of upper layer relational query systems (RQS) and lower layer stream processing systems (SPS). When users submit new queries to RQS, a query planner needs to be converted into a directed acyclic graph (DAG) consisting of tasks which are running on SPS. Based on different query requests and data stream properties, SPS need to configure different deployments strategies. However, how to dynamically predict deployment configurations of SPS to ensure the processing throughput and low resource usage is a great challenge. This article presents OrientStream, a framework for dynamic resource allocation in DDSMS using incremental machine learning techniques. By introducing the data-level, query plan-level, operator-level and cluster-level's four-level feature extraction mechanism, we firstly use the different query workloads as training sets to predict the resource usage of DDSMS and then select the optimal resource configuration from candidate settings based on the current query requests and stream properties. Finally, we validate our approach on the open source SPS--Storm. Experiments show that OrientStream can reduce CPU usage of 8%-15% and memory usage of 38%-48% respectively.\",\"PeriodicalId\":250808,\"journal\":{\"name\":\"Proceedings of the 25th ACM International on Conference on Information and Knowledge Management\",\"volume\":\"92 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 25th ACM International on Conference on Information and Knowledge Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2983323.2983681\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 25th ACM International on Conference on Information and Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2983323.2983681","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

分布式数据流管理系统通常由上层关系查询系统(RQS)和下层数据流处理系统(SPS)组成。当用户向RQS提交新的查询时,需要将查询规划器转换为由运行在SPS上的任务组成的有向无环图(DAG)。根据不同的查询请求和数据流属性,SPS需要配置不同的部署策略。然而,如何动态预测SPS的部署配置以保证处理吞吐量和低资源利用率是一个很大的挑战。本文介绍了一个使用增量机器学习技术的DDSMS动态资源分配框架——OrientStream。通过引入数据级、查询计划级、操作级和集群级的四级特征提取机制,首先以不同的查询工作负载作为训练集来预测DDSMS的资源使用情况,然后根据当前查询请求和流属性从候选设置中选择最优的资源配置。最后,我们在开源的SPS—Storm上验证了我们的方法。实验表明,OrientStream可以分别降低8%-15%的CPU使用率和38%-48%的内存使用率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
OrientStream: A Framework for Dynamic Resource Allocation in Distributed Data Stream Management Systems
Distributed data stream management systems (DDSMS) are usually composed of upper layer relational query systems (RQS) and lower layer stream processing systems (SPS). When users submit new queries to RQS, a query planner needs to be converted into a directed acyclic graph (DAG) consisting of tasks which are running on SPS. Based on different query requests and data stream properties, SPS need to configure different deployments strategies. However, how to dynamically predict deployment configurations of SPS to ensure the processing throughput and low resource usage is a great challenge. This article presents OrientStream, a framework for dynamic resource allocation in DDSMS using incremental machine learning techniques. By introducing the data-level, query plan-level, operator-level and cluster-level's four-level feature extraction mechanism, we firstly use the different query workloads as training sets to predict the resource usage of DDSMS and then select the optimal resource configuration from candidate settings based on the current query requests and stream properties. Finally, we validate our approach on the open source SPS--Storm. Experiments show that OrientStream can reduce CPU usage of 8%-15% and memory usage of 38%-48% respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信