非线性离散动力系统的平均预测控制。

D. Dmitrishin, I. Iacob, A. Stokolos
{"title":"非线性离散动力系统的平均预测控制。","authors":"D. Dmitrishin, I. Iacob, A. Stokolos","doi":"10.25728/ASSA.2020.20.1.775","DOIUrl":null,"url":null,"abstract":"We explore the problem of stabilization of unstable periodic orbits in discrete nonlinear dynamical systems. This work proposes the generalization of predictive control method for resolving the stabilization problem. Our method embodies the development of control method proposed by B.T. Polyak. The control we propose uses a linear (convex) combination of iterated functions. With the proposed method auxiliary, the problem of robust cycle stabilization for various cases of its multipliers localization is solved. An algorithm for finding a given length cycle when its multipliers are known is described as a particular case of our method application. Also, we present numerical simulation results for some well-known mappings and the possibility of further generalization of this method.","PeriodicalId":265389,"journal":{"name":"arXiv: Systems and Control","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Average predictive control for nonlinear discrete dynamical systems.\",\"authors\":\"D. Dmitrishin, I. Iacob, A. Stokolos\",\"doi\":\"10.25728/ASSA.2020.20.1.775\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We explore the problem of stabilization of unstable periodic orbits in discrete nonlinear dynamical systems. This work proposes the generalization of predictive control method for resolving the stabilization problem. Our method embodies the development of control method proposed by B.T. Polyak. The control we propose uses a linear (convex) combination of iterated functions. With the proposed method auxiliary, the problem of robust cycle stabilization for various cases of its multipliers localization is solved. An algorithm for finding a given length cycle when its multipliers are known is described as a particular case of our method application. Also, we present numerical simulation results for some well-known mappings and the possibility of further generalization of this method.\",\"PeriodicalId\":265389,\"journal\":{\"name\":\"arXiv: Systems and Control\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Systems and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.25728/ASSA.2020.20.1.775\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25728/ASSA.2020.20.1.775","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

研究离散非线性动力系统中不稳定周期轨道的镇定问题。本文提出了解决镇定问题的预测控制方法的推广。该方法体现了B.T. Polyak控制方法的发展。我们提出的控制使用迭代函数的线性(凸)组合。在该方法的辅助下,解决了各种乘子定位情况下的鲁棒周期镇定问题。当一个给定长度的循环的乘数已知时,一个算法被描述为我们的方法应用的一个特殊情况。此外,我们还给出了一些已知映射的数值模拟结果以及进一步推广该方法的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Average predictive control for nonlinear discrete dynamical systems.
We explore the problem of stabilization of unstable periodic orbits in discrete nonlinear dynamical systems. This work proposes the generalization of predictive control method for resolving the stabilization problem. Our method embodies the development of control method proposed by B.T. Polyak. The control we propose uses a linear (convex) combination of iterated functions. With the proposed method auxiliary, the problem of robust cycle stabilization for various cases of its multipliers localization is solved. An algorithm for finding a given length cycle when its multipliers are known is described as a particular case of our method application. Also, we present numerical simulation results for some well-known mappings and the possibility of further generalization of this method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信