基于文本和心电图图像的跨模态深度学习在急诊科急性胸痛患者风险预测中的应用

Po Hsiang Lin, J. Hsieh, Chien-Hua Chen, J. Jeng
{"title":"基于文本和心电图图像的跨模态深度学习在急诊科急性胸痛患者风险预测中的应用","authors":"Po Hsiang Lin, J. Hsieh, Chien-Hua Chen, J. Jeng","doi":"10.1109/ECICE52819.2021.9645629","DOIUrl":null,"url":null,"abstract":"Acute chest pain is one of the most common complaints and is frequently related to life-threatening diseases in the emergency department. We aimed to construct a cross-modal deep learning model for risk prediction of acute chest pain by the physicians' clinical texts and electrocardiogram (ECG). Two different modalities included the initial ECG image and the physicians' notes are used to predict the disposition.","PeriodicalId":176225,"journal":{"name":"2021 IEEE 3rd Eurasia Conference on IOT, Communication and Engineering (ECICE)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cross-Modal Deep Learning Based on Texts and ECG Images for Risk Prediction of Patients with Acute Chest Pain in the Emergency Department\",\"authors\":\"Po Hsiang Lin, J. Hsieh, Chien-Hua Chen, J. Jeng\",\"doi\":\"10.1109/ECICE52819.2021.9645629\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Acute chest pain is one of the most common complaints and is frequently related to life-threatening diseases in the emergency department. We aimed to construct a cross-modal deep learning model for risk prediction of acute chest pain by the physicians' clinical texts and electrocardiogram (ECG). Two different modalities included the initial ECG image and the physicians' notes are used to predict the disposition.\",\"PeriodicalId\":176225,\"journal\":{\"name\":\"2021 IEEE 3rd Eurasia Conference on IOT, Communication and Engineering (ECICE)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 3rd Eurasia Conference on IOT, Communication and Engineering (ECICE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ECICE52819.2021.9645629\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 3rd Eurasia Conference on IOT, Communication and Engineering (ECICE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECICE52819.2021.9645629","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

急性胸痛是急诊科最常见的主诉之一,经常与危及生命的疾病有关。我们的目的是构建一个跨模态深度学习模型,通过医生的临床文献和心电图(ECG)来预测急性胸痛的风险。两种不同的模式包括最初的心电图图像和医生的笔记被用来预测处置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cross-Modal Deep Learning Based on Texts and ECG Images for Risk Prediction of Patients with Acute Chest Pain in the Emergency Department
Acute chest pain is one of the most common complaints and is frequently related to life-threatening diseases in the emergency department. We aimed to construct a cross-modal deep learning model for risk prediction of acute chest pain by the physicians' clinical texts and electrocardiogram (ECG). Two different modalities included the initial ECG image and the physicians' notes are used to predict the disposition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信