基于Braess悖论的空中交通网络鲁棒性增强方法

Qing Cai, S. Alam, Haojie Ang, V. Duong
{"title":"基于Braess悖论的空中交通网络鲁棒性增强方法","authors":"Qing Cai, S. Alam, Haojie Ang, V. Duong","doi":"10.1109/SSCI47803.2020.9308452","DOIUrl":null,"url":null,"abstract":"Air traffic networks (ATNs) play an important role in air transport. It is of practical application values to improve the robustness of ATNs. Here we propose a counter-intuitive idea with the inspiration comes from the Braess’s Paradox phenomenon. To be specific, we propose to delete edges from an ATN to improve its corresponding robustness. To achieve this goal, we formulate a bi-objective optimization problem which aims to maximize the robustness of the focal ATN as well as to minimize the number of edges to be removed. In order to address the developed optimization model, we introduce the nondominated sorting genetic algorithm (NSGA-II) and modify its algorithm operators to make it fit for the established model. To check if the research idea proposed works or not, we conduct experiments on nine real-world ATNs. In the experiments, NSGAII has been compared against its successor–NSGA-III, and another state-of-the-art optimization algorithm named MODPSO. Experiments indicate that NSGA-II performs better than the rest two algorithms on the tested ATNs. For the tested ATNs, three networks have their robustness improved by 100% by removing less than six edges while the remaining six get an improvement of around 10%. This work provides aviation decision makers with a new perspective on ATNs design and management.","PeriodicalId":413489,"journal":{"name":"2020 IEEE Symposium Series on Computational Intelligence (SSCI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A Braess’s Paradox Inspired Method for Enhancing the Robustness of Air Traffic Networks\",\"authors\":\"Qing Cai, S. Alam, Haojie Ang, V. Duong\",\"doi\":\"10.1109/SSCI47803.2020.9308452\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Air traffic networks (ATNs) play an important role in air transport. It is of practical application values to improve the robustness of ATNs. Here we propose a counter-intuitive idea with the inspiration comes from the Braess’s Paradox phenomenon. To be specific, we propose to delete edges from an ATN to improve its corresponding robustness. To achieve this goal, we formulate a bi-objective optimization problem which aims to maximize the robustness of the focal ATN as well as to minimize the number of edges to be removed. In order to address the developed optimization model, we introduce the nondominated sorting genetic algorithm (NSGA-II) and modify its algorithm operators to make it fit for the established model. To check if the research idea proposed works or not, we conduct experiments on nine real-world ATNs. In the experiments, NSGAII has been compared against its successor–NSGA-III, and another state-of-the-art optimization algorithm named MODPSO. Experiments indicate that NSGA-II performs better than the rest two algorithms on the tested ATNs. For the tested ATNs, three networks have their robustness improved by 100% by removing less than six edges while the remaining six get an improvement of around 10%. This work provides aviation decision makers with a new perspective on ATNs design and management.\",\"PeriodicalId\":413489,\"journal\":{\"name\":\"2020 IEEE Symposium Series on Computational Intelligence (SSCI)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Symposium Series on Computational Intelligence (SSCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSCI47803.2020.9308452\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Symposium Series on Computational Intelligence (SSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSCI47803.2020.9308452","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

空中交通网络(ATNs)在航空运输中发挥着重要作用。提高ATNs的鲁棒性具有实际应用价值。在这里,我们提出了一个反直觉的想法,其灵感来自于布雷斯悖论现象。具体来说,我们建议从ATN中删除边缘以提高其相应的鲁棒性。为了实现这一目标,我们制定了一个双目标优化问题,旨在最大化焦点ATN的鲁棒性以及最小化要去除的边的数量。为了解决所建立的优化模型,我们引入了非支配排序遗传算法(NSGA-II),并对其算法算子进行了修改,使其更适合所建立的模型。为了验证所提出的研究思路是否有效,我们在9个真实的atn上进行了实验。在实验中,NSGAII与其继任者nsga - iii以及另一种最先进的优化算法MODPSO进行了比较。实验表明,NSGA-II算法在测试的atn上的性能优于其他两种算法。对于测试的atn,三个网络的鲁棒性通过去除少于6条边而提高了100%,而其余6个网络的鲁棒性提高了10%左右。这项工作为航空决策者提供了atn设计和管理的新视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Braess’s Paradox Inspired Method for Enhancing the Robustness of Air Traffic Networks
Air traffic networks (ATNs) play an important role in air transport. It is of practical application values to improve the robustness of ATNs. Here we propose a counter-intuitive idea with the inspiration comes from the Braess’s Paradox phenomenon. To be specific, we propose to delete edges from an ATN to improve its corresponding robustness. To achieve this goal, we formulate a bi-objective optimization problem which aims to maximize the robustness of the focal ATN as well as to minimize the number of edges to be removed. In order to address the developed optimization model, we introduce the nondominated sorting genetic algorithm (NSGA-II) and modify its algorithm operators to make it fit for the established model. To check if the research idea proposed works or not, we conduct experiments on nine real-world ATNs. In the experiments, NSGAII has been compared against its successor–NSGA-III, and another state-of-the-art optimization algorithm named MODPSO. Experiments indicate that NSGA-II performs better than the rest two algorithms on the tested ATNs. For the tested ATNs, three networks have their robustness improved by 100% by removing less than six edges while the remaining six get an improvement of around 10%. This work provides aviation decision makers with a new perspective on ATNs design and management.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信