用于深度伪造检测的混合变压器网络

Sohail Ahmed Khan, Duc-Tien Dang-Nguyen
{"title":"用于深度伪造检测的混合变压器网络","authors":"Sohail Ahmed Khan, Duc-Tien Dang-Nguyen","doi":"10.1145/3549555.3549588","DOIUrl":null,"url":null,"abstract":"Deepfake media is becoming widespread nowadays because of the easily available tools and mobile apps which can generate realistic looking deepfake videos/images without requiring any technical knowledge. With further advances in this field of technology in the near future, the quantity and quality of deepfake media is also expected to flourish, while making deepfake media a likely new practical tool to spread mis/disinformation. Because of these concerns, the deepfake media detection tools are becoming a necessity. In this study, we propose a novel hybrid transformer network utilizing early feature fusion strategy for deepfake video detection. Our model employs two different CNN networks, i.e., (1) XceptionNet and (2) EfficientNet-B4 as feature extractors. We train both feature extractors along with the transformer in an end-to-end manner on FaceForensics++, DFDC benchmarks. Our model, while having relatively straightforward architecture, achieves comparable results to other more advanced state-of-the-art approaches when evaluated on FaceForensics++ and DFDC benchmarks. Besides this, we also propose novel face cut-out augmentations, as well as random cut-out augmentations. We show that the proposed augmentations improve the detection performance of our model and reduce overfitting. In addition to that, we show that our model is capable of learning from considerably small amount of data.","PeriodicalId":191591,"journal":{"name":"Proceedings of the 19th International Conference on Content-based Multimedia Indexing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Hybrid Transformer Network for Deepfake Detection\",\"authors\":\"Sohail Ahmed Khan, Duc-Tien Dang-Nguyen\",\"doi\":\"10.1145/3549555.3549588\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deepfake media is becoming widespread nowadays because of the easily available tools and mobile apps which can generate realistic looking deepfake videos/images without requiring any technical knowledge. With further advances in this field of technology in the near future, the quantity and quality of deepfake media is also expected to flourish, while making deepfake media a likely new practical tool to spread mis/disinformation. Because of these concerns, the deepfake media detection tools are becoming a necessity. In this study, we propose a novel hybrid transformer network utilizing early feature fusion strategy for deepfake video detection. Our model employs two different CNN networks, i.e., (1) XceptionNet and (2) EfficientNet-B4 as feature extractors. We train both feature extractors along with the transformer in an end-to-end manner on FaceForensics++, DFDC benchmarks. Our model, while having relatively straightforward architecture, achieves comparable results to other more advanced state-of-the-art approaches when evaluated on FaceForensics++ and DFDC benchmarks. Besides this, we also propose novel face cut-out augmentations, as well as random cut-out augmentations. We show that the proposed augmentations improve the detection performance of our model and reduce overfitting. In addition to that, we show that our model is capable of learning from considerably small amount of data.\",\"PeriodicalId\":191591,\"journal\":{\"name\":\"Proceedings of the 19th International Conference on Content-based Multimedia Indexing\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 19th International Conference on Content-based Multimedia Indexing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3549555.3549588\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 19th International Conference on Content-based Multimedia Indexing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3549555.3549588","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

深度造假媒体现在变得越来越普遍,因为容易获得的工具和移动应用程序可以在不需要任何技术知识的情况下生成逼真的深度造假视频/图像。随着这一技术领域在不久的将来的进一步发展,深度假媒体的数量和质量也有望蓬勃发展,同时使深度假媒体成为传播错误/虚假信息的新实用工具。由于这些担忧,深度假媒体检测工具正成为一种必需品。在本研究中,我们提出了一种利用早期特征融合策略进行深度假视频检测的新型混合变压器网络。我们的模型采用了两种不同的CNN网络,即(1)XceptionNet和(2)EfficientNet-B4作为特征提取器。我们以端到端的方式在FaceForensics++、DFDC基准测试上训练特征提取器和转换器。虽然我们的模型具有相对简单的架构,但在FaceForensics++和DFDC基准测试中,我们的模型获得了与其他更先进的最先进方法相当的结果。除此之外,我们还提出了新颖的人脸切割增强,以及随机切割增强。我们表明,提出的增强提高了我们的模型的检测性能,并减少了过拟合。除此之外,我们还证明了我们的模型能够从相当少的数据中学习。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hybrid Transformer Network for Deepfake Detection
Deepfake media is becoming widespread nowadays because of the easily available tools and mobile apps which can generate realistic looking deepfake videos/images without requiring any technical knowledge. With further advances in this field of technology in the near future, the quantity and quality of deepfake media is also expected to flourish, while making deepfake media a likely new practical tool to spread mis/disinformation. Because of these concerns, the deepfake media detection tools are becoming a necessity. In this study, we propose a novel hybrid transformer network utilizing early feature fusion strategy for deepfake video detection. Our model employs two different CNN networks, i.e., (1) XceptionNet and (2) EfficientNet-B4 as feature extractors. We train both feature extractors along with the transformer in an end-to-end manner on FaceForensics++, DFDC benchmarks. Our model, while having relatively straightforward architecture, achieves comparable results to other more advanced state-of-the-art approaches when evaluated on FaceForensics++ and DFDC benchmarks. Besides this, we also propose novel face cut-out augmentations, as well as random cut-out augmentations. We show that the proposed augmentations improve the detection performance of our model and reduce overfitting. In addition to that, we show that our model is capable of learning from considerably small amount of data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信