MFR 2021:蒙面人脸识别比赛

F. Boutros, N. Damer, J. Kolf, K. Raja, Florian Kirchbuchner, Raghavendra Ramachandra, Arjan Kuijper, Pengcheng Fang, Chao Zhang, Fei Wang, David Montero, N. Aginako, B. Sierra, M. Nieto, M. Erakin, U. Demir, Hazim Kemal, Ekenel, Asaki Kataoka, K. Ichikawa, Shizuma Kubo, J Zhang, Mingjie He, Dan Han, S. Shan, Klemen Grm, Vitomir vStruc, Sachith Seneviratne, Nuran Kasthuriarachchi, Sanka Rasnayaka, Pedro C. Neto, Ana F. Sequeira, João Ribeiro Pinto, M. Saffari, Jaime S. Cardoso
{"title":"MFR 2021:蒙面人脸识别比赛","authors":"F. Boutros, N. Damer, J. Kolf, K. Raja, Florian Kirchbuchner, Raghavendra Ramachandra, Arjan Kuijper, Pengcheng Fang, Chao Zhang, Fei Wang, David Montero, N. Aginako, B. Sierra, M. Nieto, M. Erakin, U. Demir, Hazim Kemal, Ekenel, Asaki Kataoka, K. Ichikawa, Shizuma Kubo, J Zhang, Mingjie He, Dan Han, S. Shan, Klemen Grm, Vitomir vStruc, Sachith Seneviratne, Nuran Kasthuriarachchi, Sanka Rasnayaka, Pedro C. Neto, Ana F. Sequeira, João Ribeiro Pinto, M. Saffari, Jaime S. Cardoso","doi":"10.1109/IJCB52358.2021.9484337","DOIUrl":null,"url":null,"abstract":"This paper presents a summary of the Masked Face Recognition Competitions (MFR) held within the 2021 International Joint Conference on Biometrics (IJCB 2021). The competition attracted a total of 10 participating teams with valid submissions. The affiliations of these teams are diverse and associated with academia and industry in nine different countries. These teams successfully submitted 18 valid solutions. The competition is designed to motivate solutions aiming at enhancing the face recognition accuracy of masked faces. Moreover, the competition considered the deployability of the proposed solutions by taking the compactness of the face recognition models into account. A private dataset representing a collaborative, multisession, real masked, capture scenario is used to evaluate the submitted solutions. In comparison to one of the topperforming academic face recognition solutions, 10 out of the 18 submitted solutions did score higher masked face verification accuracy.","PeriodicalId":175984,"journal":{"name":"2021 IEEE International Joint Conference on Biometrics (IJCB)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":"{\"title\":\"MFR 2021: Masked Face Recognition Competition\",\"authors\":\"F. Boutros, N. Damer, J. Kolf, K. Raja, Florian Kirchbuchner, Raghavendra Ramachandra, Arjan Kuijper, Pengcheng Fang, Chao Zhang, Fei Wang, David Montero, N. Aginako, B. Sierra, M. Nieto, M. Erakin, U. Demir, Hazim Kemal, Ekenel, Asaki Kataoka, K. Ichikawa, Shizuma Kubo, J Zhang, Mingjie He, Dan Han, S. Shan, Klemen Grm, Vitomir vStruc, Sachith Seneviratne, Nuran Kasthuriarachchi, Sanka Rasnayaka, Pedro C. Neto, Ana F. Sequeira, João Ribeiro Pinto, M. Saffari, Jaime S. Cardoso\",\"doi\":\"10.1109/IJCB52358.2021.9484337\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a summary of the Masked Face Recognition Competitions (MFR) held within the 2021 International Joint Conference on Biometrics (IJCB 2021). The competition attracted a total of 10 participating teams with valid submissions. The affiliations of these teams are diverse and associated with academia and industry in nine different countries. These teams successfully submitted 18 valid solutions. The competition is designed to motivate solutions aiming at enhancing the face recognition accuracy of masked faces. Moreover, the competition considered the deployability of the proposed solutions by taking the compactness of the face recognition models into account. A private dataset representing a collaborative, multisession, real masked, capture scenario is used to evaluate the submitted solutions. In comparison to one of the topperforming academic face recognition solutions, 10 out of the 18 submitted solutions did score higher masked face verification accuracy.\",\"PeriodicalId\":175984,\"journal\":{\"name\":\"2021 IEEE International Joint Conference on Biometrics (IJCB)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"35\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Joint Conference on Biometrics (IJCB)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCB52358.2021.9484337\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Joint Conference on Biometrics (IJCB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCB52358.2021.9484337","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35

摘要

本文介绍了在2021年国际生物识别联合会议(IJCB 2021)期间举行的蒙面人脸识别比赛(MFR)的摘要。比赛共吸引了10支参赛队伍,并提交了有效的参赛作品。这些团队的隶属关系是多样化的,与九个不同国家的学术界和工业界有联系。这些团队成功提交了18个有效的解决方案。该比赛旨在激发旨在提高蒙面人脸识别准确性的解决方案。此外,竞赛还考虑了人脸识别模型的紧凑性,从而考虑了所提出解决方案的可部署性。一个私有数据集代表了一个协作的、多会话的、真实的屏蔽的、捕获的场景,用于评估提交的解决方案。与表现最好的学术人脸识别解决方案之一相比,在提交的18个解决方案中,有10个解决方案的蒙面识别准确率更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MFR 2021: Masked Face Recognition Competition
This paper presents a summary of the Masked Face Recognition Competitions (MFR) held within the 2021 International Joint Conference on Biometrics (IJCB 2021). The competition attracted a total of 10 participating teams with valid submissions. The affiliations of these teams are diverse and associated with academia and industry in nine different countries. These teams successfully submitted 18 valid solutions. The competition is designed to motivate solutions aiming at enhancing the face recognition accuracy of masked faces. Moreover, the competition considered the deployability of the proposed solutions by taking the compactness of the face recognition models into account. A private dataset representing a collaborative, multisession, real masked, capture scenario is used to evaluate the submitted solutions. In comparison to one of the topperforming academic face recognition solutions, 10 out of the 18 submitted solutions did score higher masked face verification accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信