模糊逻辑的集值扩展:分类定理

Gilbert Ornelas, V. Kreinovich
{"title":"模糊逻辑的集值扩展:分类定理","authors":"Gilbert Ornelas, V. Kreinovich","doi":"10.1109/NAFIPS.2007.383899","DOIUrl":null,"url":null,"abstract":"Experts are often not 100% confident in their statements. In traditional fuzzy logic, the expert's degree of confidence in each of his or her statements is described by a number from the interval [0,1]. However, due to similar uncertainty, an expert often cannot describe his or her degree by a single number. It is therefore reasonable to describe this degree by, e.g., a set of numbers. In this paper, we show that under reasonable conditions, the class of such sets coincides either with the class of all 1-point sets (i.e., with the traditional fuzzy set set of all numbers), or with the class of all subintervals of the interval [0,1], or with the class of all closed subsets of the interval [0,1]. Thus, if we want to go beyond standard fuzzy logic and still avoid sets of arbitrary complexity, we have to use intervals. These classification results shows the importance of interval-valued fuzzy logics.","PeriodicalId":292853,"journal":{"name":"NAFIPS 2007 - 2007 Annual Meeting of the North American Fuzzy Information Processing Society","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Set-Valued Extensions of Fuzzy Logic: Classification Theorems\",\"authors\":\"Gilbert Ornelas, V. Kreinovich\",\"doi\":\"10.1109/NAFIPS.2007.383899\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Experts are often not 100% confident in their statements. In traditional fuzzy logic, the expert's degree of confidence in each of his or her statements is described by a number from the interval [0,1]. However, due to similar uncertainty, an expert often cannot describe his or her degree by a single number. It is therefore reasonable to describe this degree by, e.g., a set of numbers. In this paper, we show that under reasonable conditions, the class of such sets coincides either with the class of all 1-point sets (i.e., with the traditional fuzzy set set of all numbers), or with the class of all subintervals of the interval [0,1], or with the class of all closed subsets of the interval [0,1]. Thus, if we want to go beyond standard fuzzy logic and still avoid sets of arbitrary complexity, we have to use intervals. These classification results shows the importance of interval-valued fuzzy logics.\",\"PeriodicalId\":292853,\"journal\":{\"name\":\"NAFIPS 2007 - 2007 Annual Meeting of the North American Fuzzy Information Processing Society\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NAFIPS 2007 - 2007 Annual Meeting of the North American Fuzzy Information Processing Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NAFIPS.2007.383899\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NAFIPS 2007 - 2007 Annual Meeting of the North American Fuzzy Information Processing Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAFIPS.2007.383899","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

专家通常对他们的陈述不是百分之百的自信。在传统模糊逻辑中,专家对其陈述的置信度用区间[0,1]中的一个数来描述。然而,由于类似的不确定性,专家往往不能用一个数字来描述他或她的学位。因此,用一组数字来描述这个度数是合理的。在本文中,我们证明了在合理的条件下,这些集合的类或者与所有1点集合的类重合(即与传统的所有数的模糊集合集合重合),或者与区间[0,1]的所有子区间的类重合,或者与区间[0,1]的所有闭子集的类重合。因此,如果我们想要超越标准模糊逻辑,并且仍然避免任意复杂性的集合,我们必须使用区间。这些分类结果显示了区间值模糊逻辑的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Set-Valued Extensions of Fuzzy Logic: Classification Theorems
Experts are often not 100% confident in their statements. In traditional fuzzy logic, the expert's degree of confidence in each of his or her statements is described by a number from the interval [0,1]. However, due to similar uncertainty, an expert often cannot describe his or her degree by a single number. It is therefore reasonable to describe this degree by, e.g., a set of numbers. In this paper, we show that under reasonable conditions, the class of such sets coincides either with the class of all 1-point sets (i.e., with the traditional fuzzy set set of all numbers), or with the class of all subintervals of the interval [0,1], or with the class of all closed subsets of the interval [0,1]. Thus, if we want to go beyond standard fuzzy logic and still avoid sets of arbitrary complexity, we have to use intervals. These classification results shows the importance of interval-valued fuzzy logics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信