学习表征规范化:关注多个输入模块

M. L. Rossen
{"title":"学习表征规范化:关注多个输入模块","authors":"M. L. Rossen","doi":"10.1109/NNSP.1991.239530","DOIUrl":null,"url":null,"abstract":"A large, multi-modular neural network can be envisaged for use in a complex, multi-task application. The optimum data representation for each sub-task of such an application is often unknown and different from the optimum data representation for the other sub-tasks. A method is needed that allows a network that contains several alternate input representations to learn to focus its attention on the best representation(s) for each sub-task to be learned, without a priori information on best representation-sub-task combinations. An adaptive attention focusing method is introduced that addresses this issue. The method involves training recurrent connections for each input module to selectively attenuate input to that module that causes training error in a final target module. The method is shown to have similarities with both gating networks and anti-Hebbian learning. A task scenario is proposed for which adaptive attention focusing provides superior classification performance relative to standard training methods.<<ETX>>","PeriodicalId":354832,"journal":{"name":"Neural Networks for Signal Processing Proceedings of the 1991 IEEE Workshop","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learned representation normalization: attention focusing with multiple input modules\",\"authors\":\"M. L. Rossen\",\"doi\":\"10.1109/NNSP.1991.239530\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A large, multi-modular neural network can be envisaged for use in a complex, multi-task application. The optimum data representation for each sub-task of such an application is often unknown and different from the optimum data representation for the other sub-tasks. A method is needed that allows a network that contains several alternate input representations to learn to focus its attention on the best representation(s) for each sub-task to be learned, without a priori information on best representation-sub-task combinations. An adaptive attention focusing method is introduced that addresses this issue. The method involves training recurrent connections for each input module to selectively attenuate input to that module that causes training error in a final target module. The method is shown to have similarities with both gating networks and anti-Hebbian learning. A task scenario is proposed for which adaptive attention focusing provides superior classification performance relative to standard training methods.<<ETX>>\",\"PeriodicalId\":354832,\"journal\":{\"name\":\"Neural Networks for Signal Processing Proceedings of the 1991 IEEE Workshop\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1991-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Networks for Signal Processing Proceedings of the 1991 IEEE Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NNSP.1991.239530\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks for Signal Processing Proceedings of the 1991 IEEE Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NNSP.1991.239530","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

可以设想在复杂的多任务应用中使用大型多模块神经网络。这种应用程序的每个子任务的最佳数据表示通常是未知的,并且与其他子任务的最佳数据表示不同。需要一种方法,允许包含多个备选输入表示的网络学习将注意力集中在要学习的每个子任务的最佳表示上,而不需要关于最佳表示-子任务组合的先验信息。针对这一问题,提出了一种自适应注意力集中方法。该方法包括训练每个输入模块的循环连接,以选择性地衰减对该模块的输入,从而导致最终目标模块中的训练错误。该方法与门控网络和反赫比学习都有相似之处。提出了一种任务场景,其中自适应注意力集中相对于标准训练方法提供了更好的分类性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learned representation normalization: attention focusing with multiple input modules
A large, multi-modular neural network can be envisaged for use in a complex, multi-task application. The optimum data representation for each sub-task of such an application is often unknown and different from the optimum data representation for the other sub-tasks. A method is needed that allows a network that contains several alternate input representations to learn to focus its attention on the best representation(s) for each sub-task to be learned, without a priori information on best representation-sub-task combinations. An adaptive attention focusing method is introduced that addresses this issue. The method involves training recurrent connections for each input module to selectively attenuate input to that module that causes training error in a final target module. The method is shown to have similarities with both gating networks and anti-Hebbian learning. A task scenario is proposed for which adaptive attention focusing provides superior classification performance relative to standard training methods.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信