Javier Cano-Cano, Francisco J. Andújar, F. J. Alfaro, J. L. Sánchez
{"title":"VEF3跟踪:为百亿亿级系统建模网络工作负载的完整框架","authors":"Javier Cano-Cano, Francisco J. Andújar, F. J. Alfaro, J. L. Sánchez","doi":"10.1109/HiPINEB.2018.00013","DOIUrl":null,"url":null,"abstract":"To meet the expected performance requirements of applications running on future exascale systems, the number of processing nodes included in such systems will have to increase and, according to the current trend, also the number of cores in each node. In these systems, the networks, both off- and on-chip, interconnecting these nodes and cores inside nodes, respectively, will have to be much more efficient than current ones. In order to develop and research on interconnection networks, simulation is the most common technique used. Simulators traditionally have used synthetic traffic as network workload which does not represent the network workload that real applications generate. The use of application communication trace files is a best strategy for this purpose. In this paper, we extend an existing tool including functionality related to communication within each node. In this way, the tool will allow interconnection network simulators to model traffic due to all the communications generated in the exascale systems.","PeriodicalId":247186,"journal":{"name":"2018 IEEE 4th International Workshop on High-Performance Interconnection Networks in the Exascale and Big-Data Era (HiPINEB)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"VEF3 Traces: Towards a Complete Framework for Modelling Network Workloads for Exascale Systems\",\"authors\":\"Javier Cano-Cano, Francisco J. Andújar, F. J. Alfaro, J. L. Sánchez\",\"doi\":\"10.1109/HiPINEB.2018.00013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To meet the expected performance requirements of applications running on future exascale systems, the number of processing nodes included in such systems will have to increase and, according to the current trend, also the number of cores in each node. In these systems, the networks, both off- and on-chip, interconnecting these nodes and cores inside nodes, respectively, will have to be much more efficient than current ones. In order to develop and research on interconnection networks, simulation is the most common technique used. Simulators traditionally have used synthetic traffic as network workload which does not represent the network workload that real applications generate. The use of application communication trace files is a best strategy for this purpose. In this paper, we extend an existing tool including functionality related to communication within each node. In this way, the tool will allow interconnection network simulators to model traffic due to all the communications generated in the exascale systems.\",\"PeriodicalId\":247186,\"journal\":{\"name\":\"2018 IEEE 4th International Workshop on High-Performance Interconnection Networks in the Exascale and Big-Data Era (HiPINEB)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 4th International Workshop on High-Performance Interconnection Networks in the Exascale and Big-Data Era (HiPINEB)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HiPINEB.2018.00013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 4th International Workshop on High-Performance Interconnection Networks in the Exascale and Big-Data Era (HiPINEB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HiPINEB.2018.00013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
VEF3 Traces: Towards a Complete Framework for Modelling Network Workloads for Exascale Systems
To meet the expected performance requirements of applications running on future exascale systems, the number of processing nodes included in such systems will have to increase and, according to the current trend, also the number of cores in each node. In these systems, the networks, both off- and on-chip, interconnecting these nodes and cores inside nodes, respectively, will have to be much more efficient than current ones. In order to develop and research on interconnection networks, simulation is the most common technique used. Simulators traditionally have used synthetic traffic as network workload which does not represent the network workload that real applications generate. The use of application communication trace files is a best strategy for this purpose. In this paper, we extend an existing tool including functionality related to communication within each node. In this way, the tool will allow interconnection network simulators to model traffic due to all the communications generated in the exascale systems.