联邦通信:理解基于边缘的联邦学习的通信协议

Gary Cleland, Di Wu, R. Ullah, B. Varghese
{"title":"联邦通信:理解基于边缘的联邦学习的通信协议","authors":"Gary Cleland, Di Wu, R. Ullah, B. Varghese","doi":"10.1109/UCC56403.2022.00018","DOIUrl":null,"url":null,"abstract":"Federated learning (FL) trains machine learning (ML) models on devices using locally generated data and exchanges models without transferring raw data to a distant server. This exchange incurs a communication overhead and impacts the performance of FL training. There is limited understanding of how communication protocols specifically contribute to the performance of FL. Such an understanding is essential for selecting the right communication protocol when designing an FL system. This paper presents FedComm, a benchmarking methodology to quantify the impact of optimized application layer protocols, namely Message Queue Telemetry Transport (MQTT), Advanced Message Queuing Protocol (AMQP), and ZeroMQ Message Transport Protocol (ZMTP), and non-optimized application layer protocols, namely as TCP and UDP, on the performance of FL. FedComm measures the overall performance of FL in terms of communication time and accuracy under varying computational and network stress and packet loss rates. Experiments on a lab-based testbed demonstrate that TCP outperforms UDP as a non-optimized application layer protocol with higher accuracy and shorter communication times for 4G and Wi-Fi networks. optimized application layer protocols such as AMQP, MQTT, and ZMTP outperformed nonoptimized application layer protocols in most network conditions, resulting in a 2. 5x reduction in communication time compared to TCP while maintaining accuracy. The experimental results enable us to highlight a number of open research issues for further investigation. FedComm is available for download from https://github.com/qub-blesson/edComm.","PeriodicalId":203244,"journal":{"name":"2022 IEEE/ACM 15th International Conference on Utility and Cloud Computing (UCC)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FedComm: Understanding Communication Protocols for Edge-based Federated Learning\",\"authors\":\"Gary Cleland, Di Wu, R. Ullah, B. Varghese\",\"doi\":\"10.1109/UCC56403.2022.00018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Federated learning (FL) trains machine learning (ML) models on devices using locally generated data and exchanges models without transferring raw data to a distant server. This exchange incurs a communication overhead and impacts the performance of FL training. There is limited understanding of how communication protocols specifically contribute to the performance of FL. Such an understanding is essential for selecting the right communication protocol when designing an FL system. This paper presents FedComm, a benchmarking methodology to quantify the impact of optimized application layer protocols, namely Message Queue Telemetry Transport (MQTT), Advanced Message Queuing Protocol (AMQP), and ZeroMQ Message Transport Protocol (ZMTP), and non-optimized application layer protocols, namely as TCP and UDP, on the performance of FL. FedComm measures the overall performance of FL in terms of communication time and accuracy under varying computational and network stress and packet loss rates. Experiments on a lab-based testbed demonstrate that TCP outperforms UDP as a non-optimized application layer protocol with higher accuracy and shorter communication times for 4G and Wi-Fi networks. optimized application layer protocols such as AMQP, MQTT, and ZMTP outperformed nonoptimized application layer protocols in most network conditions, resulting in a 2. 5x reduction in communication time compared to TCP while maintaining accuracy. The experimental results enable us to highlight a number of open research issues for further investigation. FedComm is available for download from https://github.com/qub-blesson/edComm.\",\"PeriodicalId\":203244,\"journal\":{\"name\":\"2022 IEEE/ACM 15th International Conference on Utility and Cloud Computing (UCC)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE/ACM 15th International Conference on Utility and Cloud Computing (UCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UCC56403.2022.00018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/ACM 15th International Conference on Utility and Cloud Computing (UCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UCC56403.2022.00018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

联邦学习(FL)使用本地生成的数据在设备上训练机器学习(ML)模型,并在不将原始数据传输到远程服务器的情况下交换模型。这种交换产生了通信开销,并影响了FL训练的性能。人们对通信协议如何具体地促进FL性能的理解有限。这种理解对于在设计FL系统时选择正确的通信协议是必不可少的。本文介绍了FedComm,一种用于量化优化应用层协议(即消息队列遥测传输(MQTT),高级消息队列协议(AMQP)和ZeroMQ消息传输协议(ZMTP)以及非优化应用层协议(即TCP和UDP)的影响的基准方法。在不同的计算压力和网络压力以及丢包率下,联邦通信公司从通信时间和准确性方面衡量FL的整体性能。在实验室测试平台上的实验表明,TCP作为一种非优化的应用层协议,在4G和Wi-Fi网络中具有更高的精度和更短的通信时间,优于UDP。在大多数网络条件下,经过优化的应用层协议(如AMQP、MQTT和ZMTP)的性能优于未经过优化的应用层协议,从而获得了2。与TCP相比,通信时间减少了5倍,同时保持了准确性。实验结果使我们能够突出一些有待进一步研究的开放性问题。联邦快递可从https://github.com/qub-blesson/edComm下载。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
FedComm: Understanding Communication Protocols for Edge-based Federated Learning
Federated learning (FL) trains machine learning (ML) models on devices using locally generated data and exchanges models without transferring raw data to a distant server. This exchange incurs a communication overhead and impacts the performance of FL training. There is limited understanding of how communication protocols specifically contribute to the performance of FL. Such an understanding is essential for selecting the right communication protocol when designing an FL system. This paper presents FedComm, a benchmarking methodology to quantify the impact of optimized application layer protocols, namely Message Queue Telemetry Transport (MQTT), Advanced Message Queuing Protocol (AMQP), and ZeroMQ Message Transport Protocol (ZMTP), and non-optimized application layer protocols, namely as TCP and UDP, on the performance of FL. FedComm measures the overall performance of FL in terms of communication time and accuracy under varying computational and network stress and packet loss rates. Experiments on a lab-based testbed demonstrate that TCP outperforms UDP as a non-optimized application layer protocol with higher accuracy and shorter communication times for 4G and Wi-Fi networks. optimized application layer protocols such as AMQP, MQTT, and ZMTP outperformed nonoptimized application layer protocols in most network conditions, resulting in a 2. 5x reduction in communication time compared to TCP while maintaining accuracy. The experimental results enable us to highlight a number of open research issues for further investigation. FedComm is available for download from https://github.com/qub-blesson/edComm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信