用于控制信号发生器的超高频多项式和正弦人工高阶神经网络

Ming Zhang
{"title":"用于控制信号发生器的超高频多项式和正弦人工高阶神经网络","authors":"Ming Zhang","doi":"10.1109/CICA.2014.7013235","DOIUrl":null,"url":null,"abstract":"New open box and nonlinear model of Ultra High Frequency Polynomial and Sine Artificial Higher Order Neural Network (UPS-HONN) is presented in this paper. A new learning algorithm for UPS-HONN is also developed from this study. A control signal generating system, UPS-HONN Simulator, is built based on the UPS-HONN models. Test results show that, to generate any nonlinear control signal, average error of UPS-HONN models is under 1e-6.","PeriodicalId":340740,"journal":{"name":"2014 IEEE Symposium on Computational Intelligence in Control and Automation (CICA)","volume":"238 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Ultra high frequency polynomial and sine artificial higher order neural networks for control signal generator\",\"authors\":\"Ming Zhang\",\"doi\":\"10.1109/CICA.2014.7013235\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"New open box and nonlinear model of Ultra High Frequency Polynomial and Sine Artificial Higher Order Neural Network (UPS-HONN) is presented in this paper. A new learning algorithm for UPS-HONN is also developed from this study. A control signal generating system, UPS-HONN Simulator, is built based on the UPS-HONN models. Test results show that, to generate any nonlinear control signal, average error of UPS-HONN models is under 1e-6.\",\"PeriodicalId\":340740,\"journal\":{\"name\":\"2014 IEEE Symposium on Computational Intelligence in Control and Automation (CICA)\",\"volume\":\"238 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Symposium on Computational Intelligence in Control and Automation (CICA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CICA.2014.7013235\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Symposium on Computational Intelligence in Control and Automation (CICA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CICA.2014.7013235","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种新的超高频多项式正弦人工高阶神经网络(UPS-HONN)的开箱非线性模型。在此基础上,提出了一种新的UPS-HONN学习算法。基于UPS-HONN模型,构建了控制信号生成系统UPS-HONN模拟器。测试结果表明,对于任意非线性控制信号,UPS-HONN模型的平均误差在1e-6以下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ultra high frequency polynomial and sine artificial higher order neural networks for control signal generator
New open box and nonlinear model of Ultra High Frequency Polynomial and Sine Artificial Higher Order Neural Network (UPS-HONN) is presented in this paper. A new learning algorithm for UPS-HONN is also developed from this study. A control signal generating system, UPS-HONN Simulator, is built based on the UPS-HONN models. Test results show that, to generate any nonlinear control signal, average error of UPS-HONN models is under 1e-6.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信