基于TensorFlow机器学习的恶意流量分类

Li-Der Chou, Chia-Wei Tseng, Meng-Sheng Lai, Wei-Yu Chen, Kuo-Chung Chen, Chia-Kuan Yen, Tsung-Fu Ou, Wei-Hsiang Tsai, Yi-Hsuan Chiu
{"title":"基于TensorFlow机器学习的恶意流量分类","authors":"Li-Der Chou, Chia-Wei Tseng, Meng-Sheng Lai, Wei-Yu Chen, Kuo-Chung Chen, Chia-Kuan Yen, Tsung-Fu Ou, Wei-Hsiang Tsai, Yi-Hsuan Chiu","doi":"10.1109/ICTC.2018.8539685","DOIUrl":null,"url":null,"abstract":"With the rapid development of the Internet and the innovative attacks, information security has become an important issue for system administrators and users. Because the traditional intrusion detection system is based on misuse detection technology, the disadvantage is that it needs constant updating of the feature database to cope with attacks from variant malware. This paper proposes a framework of deep learning model by using the TensorFlow platform and utilizes the NSL-KDD data set for training and testing the proposed framework. Experimental results show the proposed methodology can effectively classify malicious traffic categories.","PeriodicalId":417962,"journal":{"name":"2018 International Conference on Information and Communication Technology Convergence (ICTC)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Classification of Malicious Traffic Using TensorFlow Machine Learning\",\"authors\":\"Li-Der Chou, Chia-Wei Tseng, Meng-Sheng Lai, Wei-Yu Chen, Kuo-Chung Chen, Chia-Kuan Yen, Tsung-Fu Ou, Wei-Hsiang Tsai, Yi-Hsuan Chiu\",\"doi\":\"10.1109/ICTC.2018.8539685\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the rapid development of the Internet and the innovative attacks, information security has become an important issue for system administrators and users. Because the traditional intrusion detection system is based on misuse detection technology, the disadvantage is that it needs constant updating of the feature database to cope with attacks from variant malware. This paper proposes a framework of deep learning model by using the TensorFlow platform and utilizes the NSL-KDD data set for training and testing the proposed framework. Experimental results show the proposed methodology can effectively classify malicious traffic categories.\",\"PeriodicalId\":417962,\"journal\":{\"name\":\"2018 International Conference on Information and Communication Technology Convergence (ICTC)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Information and Communication Technology Convergence (ICTC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICTC.2018.8539685\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Information and Communication Technology Convergence (ICTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTC.2018.8539685","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

随着互联网的飞速发展和各种新型攻击的出现,信息安全已成为系统管理员和用户关注的重要问题。传统的入侵检测系统基于误用检测技术,缺点是需要不断更新特征库以应对变种恶意软件的攻击。本文利用TensorFlow平台提出了一个深度学习模型框架,并利用NSL-KDD数据集对所提出的框架进行了训练和测试。实验结果表明,该方法能够有效地对恶意流量进行分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classification of Malicious Traffic Using TensorFlow Machine Learning
With the rapid development of the Internet and the innovative attacks, information security has become an important issue for system administrators and users. Because the traditional intrusion detection system is based on misuse detection technology, the disadvantage is that it needs constant updating of the feature database to cope with attacks from variant malware. This paper proposes a framework of deep learning model by using the TensorFlow platform and utilizes the NSL-KDD data set for training and testing the proposed framework. Experimental results show the proposed methodology can effectively classify malicious traffic categories.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信