面向qos的小蜂窝网络无线VR资源分配

Tianyu Lu, Haibo Dai, Baoyun Wang
{"title":"面向qos的小蜂窝网络无线VR资源分配","authors":"Tianyu Lu, Haibo Dai, Baoyun Wang","doi":"10.1109/WCSP.2018.8555683","DOIUrl":null,"url":null,"abstract":"For wireless virtual reality (VR) over small cell networks (SCN), the latency between user’s dynamic head rotation and the synchronous change in head-mounted display (HMD) influences quality of experience (QoE). In this paper, to assess VR user’s QoE, we specify mean opinion score (MOS) as a metric of latency. With the goal of maximizing system-wide MOS, the stochastic game approach is leveraged for investigating resource allocation problem. For problem solution, a distributed multi-agent learning algorithm is proposed, which can converge to a pure-strategy Nash equilibrium (NE). Numerical results demonstrate the excellent performance of our proposed algorithm.","PeriodicalId":423073,"journal":{"name":"2018 10th International Conference on Wireless Communications and Signal Processing (WCSP)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"QoE-Orientated Resource Allocation for Wireless VR over Small Cell Networks\",\"authors\":\"Tianyu Lu, Haibo Dai, Baoyun Wang\",\"doi\":\"10.1109/WCSP.2018.8555683\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For wireless virtual reality (VR) over small cell networks (SCN), the latency between user’s dynamic head rotation and the synchronous change in head-mounted display (HMD) influences quality of experience (QoE). In this paper, to assess VR user’s QoE, we specify mean opinion score (MOS) as a metric of latency. With the goal of maximizing system-wide MOS, the stochastic game approach is leveraged for investigating resource allocation problem. For problem solution, a distributed multi-agent learning algorithm is proposed, which can converge to a pure-strategy Nash equilibrium (NE). Numerical results demonstrate the excellent performance of our proposed algorithm.\",\"PeriodicalId\":423073,\"journal\":{\"name\":\"2018 10th International Conference on Wireless Communications and Signal Processing (WCSP)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 10th International Conference on Wireless Communications and Signal Processing (WCSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WCSP.2018.8555683\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 10th International Conference on Wireless Communications and Signal Processing (WCSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WCSP.2018.8555683","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

对于基于小蜂窝网络(SCN)的无线虚拟现实(VR),用户动态头部旋转与头戴式显示器(HMD)同步变化之间的延迟影响体验质量(QoE)。在本文中,为了评估VR用户的QoE,我们指定平均意见分数(MOS)作为延迟的度量。利用随机博弈方法研究资源分配问题,以最大限度地提高系统范围内的最大可操作性。对于问题的求解,提出了一种分布式多智能体学习算法,该算法可以收敛到纯策略纳什均衡(NE)。数值结果证明了该算法的优良性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
QoE-Orientated Resource Allocation for Wireless VR over Small Cell Networks
For wireless virtual reality (VR) over small cell networks (SCN), the latency between user’s dynamic head rotation and the synchronous change in head-mounted display (HMD) influences quality of experience (QoE). In this paper, to assess VR user’s QoE, we specify mean opinion score (MOS) as a metric of latency. With the goal of maximizing system-wide MOS, the stochastic game approach is leveraged for investigating resource allocation problem. For problem solution, a distributed multi-agent learning algorithm is proposed, which can converge to a pure-strategy Nash equilibrium (NE). Numerical results demonstrate the excellent performance of our proposed algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信