{"title":"基于双层TiO2纳米管阵列的电阻式蒸汽传感器器件建模","authors":"A. Hazra","doi":"10.1109/EDKCON.2018.8770434","DOIUrl":null,"url":null,"abstract":"Single and double layered TiO2nanotube array were synthesized by anodic oxidation method. Anodization voltage was varied to develop double layered TiO2nanotube array. Developed materials were characterized structurally and morphologically by X-ray diffraction spectroscopy (XRD)and field emission scanning electron microscopy (FESEM)respectively. Sandwich structure devices with Au top electrode and Ti bottom electrode were fabricated by using both single and double layered TiO2nanotubes for vapor sensing application. A simplified device modeling was introduced to establish the sensing mechanism of both the TiO2nanotube arrays. Additional interlayer junctions in double layered TiO2nanotubes array, enhanced the vapor sensing performance significantly. Double layered TiO2nanotubes array was able to show 92.4% of response magnitude for ethanol concentration of 160 ppm at 300 K where 55.2% response was observed for mono-layered TiO2nanotube array.","PeriodicalId":344143,"journal":{"name":"2018 IEEE Electron Devices Kolkata Conference (EDKCON)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Device Modeling of Double Layered TiO2 Nanotube Array Based Resistive Vapor Sensor\",\"authors\":\"A. Hazra\",\"doi\":\"10.1109/EDKCON.2018.8770434\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Single and double layered TiO2nanotube array were synthesized by anodic oxidation method. Anodization voltage was varied to develop double layered TiO2nanotube array. Developed materials were characterized structurally and morphologically by X-ray diffraction spectroscopy (XRD)and field emission scanning electron microscopy (FESEM)respectively. Sandwich structure devices with Au top electrode and Ti bottom electrode were fabricated by using both single and double layered TiO2nanotubes for vapor sensing application. A simplified device modeling was introduced to establish the sensing mechanism of both the TiO2nanotube arrays. Additional interlayer junctions in double layered TiO2nanotubes array, enhanced the vapor sensing performance significantly. Double layered TiO2nanotubes array was able to show 92.4% of response magnitude for ethanol concentration of 160 ppm at 300 K where 55.2% response was observed for mono-layered TiO2nanotube array.\",\"PeriodicalId\":344143,\"journal\":{\"name\":\"2018 IEEE Electron Devices Kolkata Conference (EDKCON)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Electron Devices Kolkata Conference (EDKCON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EDKCON.2018.8770434\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Electron Devices Kolkata Conference (EDKCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EDKCON.2018.8770434","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Device Modeling of Double Layered TiO2 Nanotube Array Based Resistive Vapor Sensor
Single and double layered TiO2nanotube array were synthesized by anodic oxidation method. Anodization voltage was varied to develop double layered TiO2nanotube array. Developed materials were characterized structurally and morphologically by X-ray diffraction spectroscopy (XRD)and field emission scanning electron microscopy (FESEM)respectively. Sandwich structure devices with Au top electrode and Ti bottom electrode were fabricated by using both single and double layered TiO2nanotubes for vapor sensing application. A simplified device modeling was introduced to establish the sensing mechanism of both the TiO2nanotube arrays. Additional interlayer junctions in double layered TiO2nanotubes array, enhanced the vapor sensing performance significantly. Double layered TiO2nanotubes array was able to show 92.4% of response magnitude for ethanol concentration of 160 ppm at 300 K where 55.2% response was observed for mono-layered TiO2nanotube array.