{"title":"水下目标识别:一种机器学习分类器的领域自适应方法","authors":"António Pedro Oliva Afonso, A. Pinto","doi":"10.23919/OCEANS40490.2019.8962693","DOIUrl":null,"url":null,"abstract":"This paper presents a novel dataset, composed of images of objects in two distinct environments and both controlled and uncontrolled capture conditions, aimed at serving as a benchmark for domain-adaptation image classification algorithms in an air versus underwater context. All images are fully annotated, extending the use of the dataset for detection as well as segmentation tasks. An exemplifying use-case is tested, where the performance of a Support Vector Machine applied to a Bag-of-Visual-Words and SIFT features is evaluated on both domains, with different training methodologies. Results demonstrate that the conventional classifier used has a lack of generalization ability, with a poor transfer of knowledge from the aerial to the aquatic domain.","PeriodicalId":208102,"journal":{"name":"OCEANS 2019 MTS/IEEE SEATTLE","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Underwater Object Recognition: A Domain-Adaption Methodology of Machine Learning Classifiers\",\"authors\":\"António Pedro Oliva Afonso, A. Pinto\",\"doi\":\"10.23919/OCEANS40490.2019.8962693\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel dataset, composed of images of objects in two distinct environments and both controlled and uncontrolled capture conditions, aimed at serving as a benchmark for domain-adaptation image classification algorithms in an air versus underwater context. All images are fully annotated, extending the use of the dataset for detection as well as segmentation tasks. An exemplifying use-case is tested, where the performance of a Support Vector Machine applied to a Bag-of-Visual-Words and SIFT features is evaluated on both domains, with different training methodologies. Results demonstrate that the conventional classifier used has a lack of generalization ability, with a poor transfer of knowledge from the aerial to the aquatic domain.\",\"PeriodicalId\":208102,\"journal\":{\"name\":\"OCEANS 2019 MTS/IEEE SEATTLE\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"OCEANS 2019 MTS/IEEE SEATTLE\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/OCEANS40490.2019.8962693\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"OCEANS 2019 MTS/IEEE SEATTLE","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/OCEANS40490.2019.8962693","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Underwater Object Recognition: A Domain-Adaption Methodology of Machine Learning Classifiers
This paper presents a novel dataset, composed of images of objects in two distinct environments and both controlled and uncontrolled capture conditions, aimed at serving as a benchmark for domain-adaptation image classification algorithms in an air versus underwater context. All images are fully annotated, extending the use of the dataset for detection as well as segmentation tasks. An exemplifying use-case is tested, where the performance of a Support Vector Machine applied to a Bag-of-Visual-Words and SIFT features is evaluated on both domains, with different training methodologies. Results demonstrate that the conventional classifier used has a lack of generalization ability, with a poor transfer of knowledge from the aerial to the aquatic domain.