代码史书

Shreya R. Mehta, Sneha Patil, Nikita S. Shirguppi, V. Attar
{"title":"代码史书","authors":"Shreya R. Mehta, Sneha Patil, Nikita S. Shirguppi, V. Attar","doi":"10.1109/ICMA52036.2021.9512639","DOIUrl":null,"url":null,"abstract":"Source Code Summarization implies generating summary in natural language from a given code snippet which can be helpful to developers for a platitude of reasons like Knowledge Training, to understand in brief about a newly imported project, to maintain precise summaries on the evolution of source code (using git history), etc. Instead of using state-of-art approaches like RNN and CNN, we propose an alternative approach that uses UAST (Universal Abstract Syntax Tree) of the source code to generate tokens and then use the Transformer model with self-attention mechanism that uses encoder-decoder, which unlike RNN method is helpful for capturing long-range dependencies. We have considered Java code snippets for generating the code summaries.","PeriodicalId":339025,"journal":{"name":"2021 IEEE International Conference on Mechatronics and Automation (ICMA)","volume":"188 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Code Summarizer\",\"authors\":\"Shreya R. Mehta, Sneha Patil, Nikita S. Shirguppi, V. Attar\",\"doi\":\"10.1109/ICMA52036.2021.9512639\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Source Code Summarization implies generating summary in natural language from a given code snippet which can be helpful to developers for a platitude of reasons like Knowledge Training, to understand in brief about a newly imported project, to maintain precise summaries on the evolution of source code (using git history), etc. Instead of using state-of-art approaches like RNN and CNN, we propose an alternative approach that uses UAST (Universal Abstract Syntax Tree) of the source code to generate tokens and then use the Transformer model with self-attention mechanism that uses encoder-decoder, which unlike RNN method is helpful for capturing long-range dependencies. We have considered Java code snippets for generating the code summaries.\",\"PeriodicalId\":339025,\"journal\":{\"name\":\"2021 IEEE International Conference on Mechatronics and Automation (ICMA)\",\"volume\":\"188 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Mechatronics and Automation (ICMA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMA52036.2021.9512639\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Mechatronics and Automation (ICMA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMA52036.2021.9512639","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

源代码摘要意味着从给定的代码片段中生成自然语言的摘要,这可以帮助开发人员进行知识培训,简单地了解新导入的项目,维护源代码演变的精确摘要(使用git历史)等。与使用RNN和CNN等最先进的方法不同,我们提出了一种替代方法,即使用源代码的UAST(通用抽象语法树)来生成令牌,然后使用具有自关注机制的Transformer模型,该机制使用编码器-解码器,与RNN方法不同,它有助于捕获远程依赖关系。我们已经考虑了用于生成代码摘要的Java代码片段。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Code Summarizer
Source Code Summarization implies generating summary in natural language from a given code snippet which can be helpful to developers for a platitude of reasons like Knowledge Training, to understand in brief about a newly imported project, to maintain precise summaries on the evolution of source code (using git history), etc. Instead of using state-of-art approaches like RNN and CNN, we propose an alternative approach that uses UAST (Universal Abstract Syntax Tree) of the source code to generate tokens and then use the Transformer model with self-attention mechanism that uses encoder-decoder, which unlike RNN method is helpful for capturing long-range dependencies. We have considered Java code snippets for generating the code summaries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信