分布式声传感器网络中机动目标跟踪的神经网络辅助无气味卡尔曼滤波

Zhijun Yu, S. Dong, Jianming Wei, Tao Xing, Haitao Liu
{"title":"分布式声传感器网络中机动目标跟踪的神经网络辅助无气味卡尔曼滤波","authors":"Zhijun Yu, S. Dong, Jianming Wei, Tao Xing, Haitao Liu","doi":"10.1109/ICCTA.2007.88","DOIUrl":null,"url":null,"abstract":"A new neural network aided unscented Kalman filter is presented for tracking maneuvering target in distributed acoustic sensor networks. In practice, the system dynamics of these problems are usually incompletely observed, there may be large modeling errors when the target is maneuverable and some parameters of the system models may be inaccurate. So we propose using an offline trained neural network to correct these errors, the nonlinear inferring process is done by the normal unscented Kalman filter. This method doesn't need complex modeling for tracking maneuvering target and is very suitable for real-time implementation because the implementation time is only the sum of the unscented Kalman filter and the neural network recall time","PeriodicalId":308247,"journal":{"name":"2007 International Conference on Computing: Theory and Applications (ICCTA'07)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Neural Network Aided Unscented Kalman Filter for Maneuvering Target Tracking in Distributed Acoustic Sensor Networks\",\"authors\":\"Zhijun Yu, S. Dong, Jianming Wei, Tao Xing, Haitao Liu\",\"doi\":\"10.1109/ICCTA.2007.88\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new neural network aided unscented Kalman filter is presented for tracking maneuvering target in distributed acoustic sensor networks. In practice, the system dynamics of these problems are usually incompletely observed, there may be large modeling errors when the target is maneuverable and some parameters of the system models may be inaccurate. So we propose using an offline trained neural network to correct these errors, the nonlinear inferring process is done by the normal unscented Kalman filter. This method doesn't need complex modeling for tracking maneuvering target and is very suitable for real-time implementation because the implementation time is only the sum of the unscented Kalman filter and the neural network recall time\",\"PeriodicalId\":308247,\"journal\":{\"name\":\"2007 International Conference on Computing: Theory and Applications (ICCTA'07)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 International Conference on Computing: Theory and Applications (ICCTA'07)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCTA.2007.88\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Conference on Computing: Theory and Applications (ICCTA'07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCTA.2007.88","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

针对分布式声传感器网络中机动目标的跟踪问题,提出了一种新的神经网络辅助无气味卡尔曼滤波方法。在实际应用中,这类问题的系统动力学通常观察不完全,当目标为可机动时,可能存在较大的建模误差,系统模型的某些参数可能不准确。因此,我们提出使用离线训练的神经网络来纠正这些错误,非线性推理过程由普通的无气味卡尔曼滤波器完成。该方法不需要复杂的建模来跟踪机动目标,并且由于实现时间仅为无气味卡尔曼滤波和神经网络回忆时间的总和,因此非常适合实时实现
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neural Network Aided Unscented Kalman Filter for Maneuvering Target Tracking in Distributed Acoustic Sensor Networks
A new neural network aided unscented Kalman filter is presented for tracking maneuvering target in distributed acoustic sensor networks. In practice, the system dynamics of these problems are usually incompletely observed, there may be large modeling errors when the target is maneuverable and some parameters of the system models may be inaccurate. So we propose using an offline trained neural network to correct these errors, the nonlinear inferring process is done by the normal unscented Kalman filter. This method doesn't need complex modeling for tracking maneuvering target and is very suitable for real-time implementation because the implementation time is only the sum of the unscented Kalman filter and the neural network recall time
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信