基于时空自回归滤波的STAP检测

J. A. Russ, D. Casbeer, A. Swindlehurst
{"title":"基于时空自回归滤波的STAP检测","authors":"J. A. Russ, D. Casbeer, A. Swindlehurst","doi":"10.1109/NRC.2004.1316483","DOIUrl":null,"url":null,"abstract":"Application of space-time adaptive processing (STAP) in real situations requires dimension-reducing methods. This is due to both the large computational cost involved in calculating the interference statistics and the smaller number of stationary training samples available to estimate the clutter covariance. Recently, auto-regressive (AR) filtering techniques have been used to help reduce computation and secondary sample support requirements in STAP scenarios. We compare the detection performance of several AR-based algorithms with more standard GLRT-type approaches. In particular, we consider the parametric amplitude matched filter (PAMF) and the space-time autoregressive filter (STAR), and show that they outperform standard GLR tests, especially in challenging situations with low sample support. Among the parametric methods considered, the STAR approach provides the most robust overall performance.","PeriodicalId":268965,"journal":{"name":"Proceedings of the 2004 IEEE Radar Conference (IEEE Cat. No.04CH37509)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2004-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"STAP detection using space-time autoregressive filtering\",\"authors\":\"J. A. Russ, D. Casbeer, A. Swindlehurst\",\"doi\":\"10.1109/NRC.2004.1316483\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Application of space-time adaptive processing (STAP) in real situations requires dimension-reducing methods. This is due to both the large computational cost involved in calculating the interference statistics and the smaller number of stationary training samples available to estimate the clutter covariance. Recently, auto-regressive (AR) filtering techniques have been used to help reduce computation and secondary sample support requirements in STAP scenarios. We compare the detection performance of several AR-based algorithms with more standard GLRT-type approaches. In particular, we consider the parametric amplitude matched filter (PAMF) and the space-time autoregressive filter (STAR), and show that they outperform standard GLR tests, especially in challenging situations with low sample support. Among the parametric methods considered, the STAR approach provides the most robust overall performance.\",\"PeriodicalId\":268965,\"journal\":{\"name\":\"Proceedings of the 2004 IEEE Radar Conference (IEEE Cat. No.04CH37509)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2004 IEEE Radar Conference (IEEE Cat. No.04CH37509)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NRC.2004.1316483\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2004 IEEE Radar Conference (IEEE Cat. No.04CH37509)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NRC.2004.1316483","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

时空自适应处理(STAP)在实际应用中需要采用降维方法。这是由于计算干扰统计量所涉及的计算成本大,以及可用来估计杂波协方差的平稳训练样本数量较少。最近,自回归(AR)滤波技术被用于帮助减少STAP场景中的计算和二次样本支持需求。我们比较了几种基于ar的算法与更标准的glrt类型方法的检测性能。特别是,我们考虑了参数幅度匹配滤波器(PAMF)和时空自回归滤波器(STAR),并表明它们优于标准GLR测试,特别是在具有低样本支持度的挑战性情况下。在考虑的参数方法中,STAR方法提供了最稳健的整体性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
STAP detection using space-time autoregressive filtering
Application of space-time adaptive processing (STAP) in real situations requires dimension-reducing methods. This is due to both the large computational cost involved in calculating the interference statistics and the smaller number of stationary training samples available to estimate the clutter covariance. Recently, auto-regressive (AR) filtering techniques have been used to help reduce computation and secondary sample support requirements in STAP scenarios. We compare the detection performance of several AR-based algorithms with more standard GLRT-type approaches. In particular, we consider the parametric amplitude matched filter (PAMF) and the space-time autoregressive filter (STAR), and show that they outperform standard GLR tests, especially in challenging situations with low sample support. Among the parametric methods considered, the STAR approach provides the most robust overall performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信