不同条件下空化泡破裂的数值研究

V. Nguyen, Thanh-Hoang Phan, Dong-Hyun Kim, W. Park
{"title":"不同条件下空化泡破裂的数值研究","authors":"V. Nguyen, Thanh-Hoang Phan, Dong-Hyun Kim, W. Park","doi":"10.11159/htff22.133","DOIUrl":null,"url":null,"abstract":"Extended Abstract Cavitation bubble plays an important role in applications in diverse fields of science and technology such as naval structure engineering, biosciences, and biomedical technology. The cavitation bubble collapses violently, and in different conditions, the collapse of the cavitation bubble produces high-speed jets of liquid bubbles moving in different directions [1, 2]. This in turn generates high local energy and high-pressure waves and high temperature [3, 4]. Multiple events of cavitation bubble collapse that produce high pressure over time can cause detrimental effects on the mechanical components. This in turn generates high local energy and impacts the surface with high-pressure waves that can erode the metals [5]. Conversely, this energy was observed as useful for the hydrodynamic cavitation process in cleaning technology or in industrial applications such as wastewater treatment and biofuel production [6]. Bubble collapse leads to the re-entrant jet formation, concentrated pressures, shear, and lift forces on the dirt particle or biomass, and high impulsive loads on a layer of materials. In the other approaches, cavitation bubbles can be intentionally generated by using acoustic waves or laser technologies to take advantage of local high-energy and microjets for application to biosciences, and biomedical technology such as needle-free injection devices, tissue engineering, and lithotripsy [7]. In this study, we numerically simulate the cavity bubble expansion and its spherical and non-spherical collapse under various conditions. We shall compare different numerical models for this problem with the advantages and disadvantages of each model. We shall discuss the bubble dynamics as well as the high-speed jet, the presence of a shock","PeriodicalId":385356,"journal":{"name":"Proceedings of the 8th World Congress on Mechanical, Chemical, and Material Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical Study of Cavitation Bubble Collapse under Various\\nConditions\",\"authors\":\"V. Nguyen, Thanh-Hoang Phan, Dong-Hyun Kim, W. Park\",\"doi\":\"10.11159/htff22.133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Extended Abstract Cavitation bubble plays an important role in applications in diverse fields of science and technology such as naval structure engineering, biosciences, and biomedical technology. The cavitation bubble collapses violently, and in different conditions, the collapse of the cavitation bubble produces high-speed jets of liquid bubbles moving in different directions [1, 2]. This in turn generates high local energy and high-pressure waves and high temperature [3, 4]. Multiple events of cavitation bubble collapse that produce high pressure over time can cause detrimental effects on the mechanical components. This in turn generates high local energy and impacts the surface with high-pressure waves that can erode the metals [5]. Conversely, this energy was observed as useful for the hydrodynamic cavitation process in cleaning technology or in industrial applications such as wastewater treatment and biofuel production [6]. Bubble collapse leads to the re-entrant jet formation, concentrated pressures, shear, and lift forces on the dirt particle or biomass, and high impulsive loads on a layer of materials. In the other approaches, cavitation bubbles can be intentionally generated by using acoustic waves or laser technologies to take advantage of local high-energy and microjets for application to biosciences, and biomedical technology such as needle-free injection devices, tissue engineering, and lithotripsy [7]. In this study, we numerically simulate the cavity bubble expansion and its spherical and non-spherical collapse under various conditions. We shall compare different numerical models for this problem with the advantages and disadvantages of each model. We shall discuss the bubble dynamics as well as the high-speed jet, the presence of a shock\",\"PeriodicalId\":385356,\"journal\":{\"name\":\"Proceedings of the 8th World Congress on Mechanical, Chemical, and Material Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 8th World Congress on Mechanical, Chemical, and Material Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11159/htff22.133\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 8th World Congress on Mechanical, Chemical, and Material Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11159/htff22.133","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

空化泡在舰船结构工程、生物科学、生物医学技术等科学技术领域有着重要的应用。空化泡剧烈坍缩,在不同条件下,空化泡的坍缩会产生沿不同方向运动的液体气泡高速射流[1,2]。这反过来又产生了高局部能量和高压波和高温[3,4]。随着时间的推移,产生高压的多次空化气泡破裂事件会对机械部件造成不利影响。这反过来又会产生高局部能量,并以高压波冲击表面,从而侵蚀金属[5]。相反,这种能量被认为对清洁技术中的流体动力空化过程或废水处理和生物燃料生产等工业应用非常有用[6]。气泡的破裂导致再入射流的形成,对污垢颗粒或生物质产生集中的压力、剪切力和升力,并对一层材料产生高脉冲载荷。在其他方法中,可以利用声波或激光技术有意产生空化气泡,利用局部高能和微射流应用于生物科学和生物医学技术,如无针注射装置、组织工程和碎石术[7]。在本研究中,我们数值模拟了不同条件下的空泡膨胀及其球形和非球形崩塌。我们将对这个问题的不同数值模型进行比较,并指出每种模型的优缺点。我们将讨论气泡动力学以及高速射流和激波的存在
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical Study of Cavitation Bubble Collapse under Various Conditions
Extended Abstract Cavitation bubble plays an important role in applications in diverse fields of science and technology such as naval structure engineering, biosciences, and biomedical technology. The cavitation bubble collapses violently, and in different conditions, the collapse of the cavitation bubble produces high-speed jets of liquid bubbles moving in different directions [1, 2]. This in turn generates high local energy and high-pressure waves and high temperature [3, 4]. Multiple events of cavitation bubble collapse that produce high pressure over time can cause detrimental effects on the mechanical components. This in turn generates high local energy and impacts the surface with high-pressure waves that can erode the metals [5]. Conversely, this energy was observed as useful for the hydrodynamic cavitation process in cleaning technology or in industrial applications such as wastewater treatment and biofuel production [6]. Bubble collapse leads to the re-entrant jet formation, concentrated pressures, shear, and lift forces on the dirt particle or biomass, and high impulsive loads on a layer of materials. In the other approaches, cavitation bubbles can be intentionally generated by using acoustic waves or laser technologies to take advantage of local high-energy and microjets for application to biosciences, and biomedical technology such as needle-free injection devices, tissue engineering, and lithotripsy [7]. In this study, we numerically simulate the cavity bubble expansion and its spherical and non-spherical collapse under various conditions. We shall compare different numerical models for this problem with the advantages and disadvantages of each model. We shall discuss the bubble dynamics as well as the high-speed jet, the presence of a shock
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信