Jun-Chau Chien, M. Anwar, E. Yeh, Luke P. Lee, A. Niknejad
{"title":"基于65纳米CMOS的6.5/17.5 ghz双通道干涉仪电容式传感器,用于高速流式细胞术","authors":"Jun-Chau Chien, M. Anwar, E. Yeh, Luke P. Lee, A. Niknejad","doi":"10.1109/MWSYM.2014.6848507","DOIUrl":null,"url":null,"abstract":"In this paper, a dual-channel interferometer-based capacitive sensor with high sensitivity is implemented in 65nm CMOS. Such architecture facilitates high throughput flow cytometry applications using intrinsic EM signatures of biological cells. To enhance SNR, injection-locked oscillator is utilized to perform phase amplification with regard to capacitance-induced frequency shift. Noise from on-chip QVCO is further reduced through I/Q interpolation. Measurements show that the sensor achieves better than 1.5 aF of sensitivity at 250-kHz equivalent noise-bandwidth. With the aid of 3D hydrodynamic focusing, flow cytometry is tested with polystyrene beads. The proposed dual-channel sensor consumes 30 mW under 1 V supply.","PeriodicalId":262816,"journal":{"name":"2014 IEEE MTT-S International Microwave Symposium (IMS2014)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"A 6.5/17.5-GHz dual-channel interferometer-based capacitive Sensor in 65-nm CMOS for high-speed flow cytometry\",\"authors\":\"Jun-Chau Chien, M. Anwar, E. Yeh, Luke P. Lee, A. Niknejad\",\"doi\":\"10.1109/MWSYM.2014.6848507\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a dual-channel interferometer-based capacitive sensor with high sensitivity is implemented in 65nm CMOS. Such architecture facilitates high throughput flow cytometry applications using intrinsic EM signatures of biological cells. To enhance SNR, injection-locked oscillator is utilized to perform phase amplification with regard to capacitance-induced frequency shift. Noise from on-chip QVCO is further reduced through I/Q interpolation. Measurements show that the sensor achieves better than 1.5 aF of sensitivity at 250-kHz equivalent noise-bandwidth. With the aid of 3D hydrodynamic focusing, flow cytometry is tested with polystyrene beads. The proposed dual-channel sensor consumes 30 mW under 1 V supply.\",\"PeriodicalId\":262816,\"journal\":{\"name\":\"2014 IEEE MTT-S International Microwave Symposium (IMS2014)\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE MTT-S International Microwave Symposium (IMS2014)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MWSYM.2014.6848507\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE MTT-S International Microwave Symposium (IMS2014)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSYM.2014.6848507","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A 6.5/17.5-GHz dual-channel interferometer-based capacitive Sensor in 65-nm CMOS for high-speed flow cytometry
In this paper, a dual-channel interferometer-based capacitive sensor with high sensitivity is implemented in 65nm CMOS. Such architecture facilitates high throughput flow cytometry applications using intrinsic EM signatures of biological cells. To enhance SNR, injection-locked oscillator is utilized to perform phase amplification with regard to capacitance-induced frequency shift. Noise from on-chip QVCO is further reduced through I/Q interpolation. Measurements show that the sensor achieves better than 1.5 aF of sensitivity at 250-kHz equivalent noise-bandwidth. With the aid of 3D hydrodynamic focusing, flow cytometry is tested with polystyrene beads. The proposed dual-channel sensor consumes 30 mW under 1 V supply.