量子阱中垂直输运和捕获的量子力学方面

G. Baraff
{"title":"量子阱中垂直输运和捕获的量子力学方面","authors":"G. Baraff","doi":"10.1109/IWCE.1998.742711","DOIUrl":null,"url":null,"abstract":"We study the effect of an imaginary potential and (separately) of a finite coherence length on the transmission, reflection, and capture fractions for a thermal distribution of carriers incident on a single quantum well. The formalism used is closely related to one used by Kuhn and Mahler for the same purpose. Closed form expressions are obtained for the three transport fractions resulting from a single incident beam. Three independent fitting parameters are used in this formalism, namely, the size of the imaginary potential, the extent it penetrates into the barriers adjacent to the well, and the phase coherence length. This last is a length scale associated with a correlation function that appears when the phase of the wave function is treated as a stochastic variable. We show that the parameters can be chosen so that the transport fractions agree with those calculated from first principles, and show how a shortening of the coherence length, e.g., by electron-electron interactions that have been left out of the first principles calculation, destroys the resonant behavior of these fractions predicted by Brum and Bastard.","PeriodicalId":357304,"journal":{"name":"1998 Sixth International Workshop on Computational Electronics. Extended Abstracts (Cat. No.98EX116)","volume":"172 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantum mechanical aspects of vertical transport and capture in quantum wells\",\"authors\":\"G. Baraff\",\"doi\":\"10.1109/IWCE.1998.742711\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the effect of an imaginary potential and (separately) of a finite coherence length on the transmission, reflection, and capture fractions for a thermal distribution of carriers incident on a single quantum well. The formalism used is closely related to one used by Kuhn and Mahler for the same purpose. Closed form expressions are obtained for the three transport fractions resulting from a single incident beam. Three independent fitting parameters are used in this formalism, namely, the size of the imaginary potential, the extent it penetrates into the barriers adjacent to the well, and the phase coherence length. This last is a length scale associated with a correlation function that appears when the phase of the wave function is treated as a stochastic variable. We show that the parameters can be chosen so that the transport fractions agree with those calculated from first principles, and show how a shortening of the coherence length, e.g., by electron-electron interactions that have been left out of the first principles calculation, destroys the resonant behavior of these fractions predicted by Brum and Bastard.\",\"PeriodicalId\":357304,\"journal\":{\"name\":\"1998 Sixth International Workshop on Computational Electronics. Extended Abstracts (Cat. No.98EX116)\",\"volume\":\"172 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1998 Sixth International Workshop on Computational Electronics. Extended Abstracts (Cat. No.98EX116)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWCE.1998.742711\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1998 Sixth International Workshop on Computational Electronics. Extended Abstracts (Cat. No.98EX116)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWCE.1998.742711","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了虚势和有限相干长度对入射在单个量子阱上的载流子热分布的透射、反射和捕获分数的影响。所使用的形式主义与库恩和马勒为同一目的所使用的形式主义密切相关。得到了单入射光束产生的三个输运分数的封闭表达式。在这种形式中,使用了三个独立的拟合参数,即虚势的大小,它穿透邻近井的势垒的程度,以及相相干长度。最后一个是与相关函数相关联的长度尺度,当波函数的相位被视为随机变量时,相关函数就会出现。我们展示了可以选择参数,使输运分数与第一原理计算的分数一致,并展示了相干长度的缩短,例如,通过第一原理计算中遗漏的电子-电子相互作用,如何破坏Brum和Bastard预测的这些分数的共振行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantum mechanical aspects of vertical transport and capture in quantum wells
We study the effect of an imaginary potential and (separately) of a finite coherence length on the transmission, reflection, and capture fractions for a thermal distribution of carriers incident on a single quantum well. The formalism used is closely related to one used by Kuhn and Mahler for the same purpose. Closed form expressions are obtained for the three transport fractions resulting from a single incident beam. Three independent fitting parameters are used in this formalism, namely, the size of the imaginary potential, the extent it penetrates into the barriers adjacent to the well, and the phase coherence length. This last is a length scale associated with a correlation function that appears when the phase of the wave function is treated as a stochastic variable. We show that the parameters can be chosen so that the transport fractions agree with those calculated from first principles, and show how a shortening of the coherence length, e.g., by electron-electron interactions that have been left out of the first principles calculation, destroys the resonant behavior of these fractions predicted by Brum and Bastard.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信