{"title":"约束混凝土桥柱抗震性能研究","authors":"J. Moehle, D. Lehman","doi":"10.14359/18262","DOIUrl":null,"url":null,"abstract":"A current focus in earthquake engineering research and practice is the development of seismic design procedures whose aim is to achieve a specified performance. To implement such procedures, engineers require methods to define damage in terms of engineering criteria. Previous experimental research on bridge columns has focused on component failure, with relatively little attention to other damage states. A research program was undertaken to assess the seismic performance of well-confined, circular-cross-section, reinforced concrete bridge columns at a range of damage states. The test variables included aspect ratio, longitudinal reinforcement ratio, spiral reinforcement ratio, axial load ratio, and the length of the well-confined region adjacent to the zone where plastic hinging is anticipated. The experimental results are used to identify important damage states and to link those states to engineering parameters.","PeriodicalId":104265,"journal":{"name":"SP-238: International Symposium on Confined Concrete","volume":"209 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Seismic Performance of Confined Concrete Bridge Columns\",\"authors\":\"J. Moehle, D. Lehman\",\"doi\":\"10.14359/18262\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A current focus in earthquake engineering research and practice is the development of seismic design procedures whose aim is to achieve a specified performance. To implement such procedures, engineers require methods to define damage in terms of engineering criteria. Previous experimental research on bridge columns has focused on component failure, with relatively little attention to other damage states. A research program was undertaken to assess the seismic performance of well-confined, circular-cross-section, reinforced concrete bridge columns at a range of damage states. The test variables included aspect ratio, longitudinal reinforcement ratio, spiral reinforcement ratio, axial load ratio, and the length of the well-confined region adjacent to the zone where plastic hinging is anticipated. The experimental results are used to identify important damage states and to link those states to engineering parameters.\",\"PeriodicalId\":104265,\"journal\":{\"name\":\"SP-238: International Symposium on Confined Concrete\",\"volume\":\"209 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SP-238: International Symposium on Confined Concrete\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14359/18262\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SP-238: International Symposium on Confined Concrete","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14359/18262","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Seismic Performance of Confined Concrete Bridge Columns
A current focus in earthquake engineering research and practice is the development of seismic design procedures whose aim is to achieve a specified performance. To implement such procedures, engineers require methods to define damage in terms of engineering criteria. Previous experimental research on bridge columns has focused on component failure, with relatively little attention to other damage states. A research program was undertaken to assess the seismic performance of well-confined, circular-cross-section, reinforced concrete bridge columns at a range of damage states. The test variables included aspect ratio, longitudinal reinforcement ratio, spiral reinforcement ratio, axial load ratio, and the length of the well-confined region adjacent to the zone where plastic hinging is anticipated. The experimental results are used to identify important damage states and to link those states to engineering parameters.