Anastasia Koivikko, Vipul K. Sharma, Vilma Lampinen, Kyriacos Yiannacou, V. Sariola
{"title":"基于橡胶叶骨架的可生物降解、柔性和透明触觉压力传感器","authors":"Anastasia Koivikko, Vipul K. Sharma, Vilma Lampinen, Kyriacos Yiannacou, V. Sariola","doi":"10.1109/SENSORS47125.2020.9278756","DOIUrl":null,"url":null,"abstract":"Capacitive sensors have many applications in tactile sensing, human-machine interfaces, on-body sensors, and patient monitoring. Particularly in biomedical applications, it would be beneficial if the sensor is disposable and readily degradable for efficient recycling. In this study, we report a biodegradable capacitive tactile pressure sensor based on sustainable and bio resourced materials. Silver-nanowire-coated rubber tree leaf skeletons are used as transparent and flexible electrodes while a biodegradable clear tape is used as the dielectric layer. The fabricated sensor is sensitive and can respond to low pressures (7.9 mN when pressed with a probe with a surface area of 79 mm2 / 0.1 kPa) ranging to relatively high pressures (37 kPa), with a sensitivity up to ≈ 4.5×10-3 kPa1. Owing to all bio resourced constituents, the sensor is biodegradable and does not create electronic waste.","PeriodicalId":338240,"journal":{"name":"2020 IEEE Sensors","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Biodegradable, Flexible and Transparent Tactile Pressure Sensor Based on Rubber Leaf Skeletons\",\"authors\":\"Anastasia Koivikko, Vipul K. Sharma, Vilma Lampinen, Kyriacos Yiannacou, V. Sariola\",\"doi\":\"10.1109/SENSORS47125.2020.9278756\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Capacitive sensors have many applications in tactile sensing, human-machine interfaces, on-body sensors, and patient monitoring. Particularly in biomedical applications, it would be beneficial if the sensor is disposable and readily degradable for efficient recycling. In this study, we report a biodegradable capacitive tactile pressure sensor based on sustainable and bio resourced materials. Silver-nanowire-coated rubber tree leaf skeletons are used as transparent and flexible electrodes while a biodegradable clear tape is used as the dielectric layer. The fabricated sensor is sensitive and can respond to low pressures (7.9 mN when pressed with a probe with a surface area of 79 mm2 / 0.1 kPa) ranging to relatively high pressures (37 kPa), with a sensitivity up to ≈ 4.5×10-3 kPa1. Owing to all bio resourced constituents, the sensor is biodegradable and does not create electronic waste.\",\"PeriodicalId\":338240,\"journal\":{\"name\":\"2020 IEEE Sensors\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Sensors\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SENSORS47125.2020.9278756\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Sensors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SENSORS47125.2020.9278756","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Biodegradable, Flexible and Transparent Tactile Pressure Sensor Based on Rubber Leaf Skeletons
Capacitive sensors have many applications in tactile sensing, human-machine interfaces, on-body sensors, and patient monitoring. Particularly in biomedical applications, it would be beneficial if the sensor is disposable and readily degradable for efficient recycling. In this study, we report a biodegradable capacitive tactile pressure sensor based on sustainable and bio resourced materials. Silver-nanowire-coated rubber tree leaf skeletons are used as transparent and flexible electrodes while a biodegradable clear tape is used as the dielectric layer. The fabricated sensor is sensitive and can respond to low pressures (7.9 mN when pressed with a probe with a surface area of 79 mm2 / 0.1 kPa) ranging to relatively high pressures (37 kPa), with a sensitivity up to ≈ 4.5×10-3 kPa1. Owing to all bio resourced constituents, the sensor is biodegradable and does not create electronic waste.