Ryan Hoque, Lawrence Yunliang Chen, Satvik Sharma, K. Dharmarajan, Brijen Thananjeyan, P. Abbeel, Ken Goldberg
{"title":"Fleet- dagger:具有可扩展人类监督的交互式机器人舰队学习","authors":"Ryan Hoque, Lawrence Yunliang Chen, Satvik Sharma, K. Dharmarajan, Brijen Thananjeyan, P. Abbeel, Ken Goldberg","doi":"10.48550/arXiv.2206.14349","DOIUrl":null,"url":null,"abstract":"Commercial and industrial deployments of robot fleets at Amazon, Nimble, Plus One, Waymo, and Zoox query remote human teleoperators when robots are at risk or unable to make task progress. With continual learning, interventions from the remote pool of humans can also be used to improve the robot fleet control policy over time. A central question is how to effectively allocate limited human attention. Prior work addresses this in the single-robot, single-human setting; we formalize the Interactive Fleet Learning (IFL) setting, in which multiple robots interactively query and learn from multiple human supervisors. We propose Return on Human Effort (ROHE) as a new metric and Fleet-DAgger, a family of IFL algorithms. We present an open-source IFL benchmark suite of GPU-accelerated Isaac Gym environments for standardized evaluation and development of IFL algorithms. We compare a novel Fleet-DAgger algorithm to 4 baselines with 100 robots in simulation. We also perform a physical block-pushing experiment with 4 ABB YuMi robot arms and 2 remote humans. Experiments suggest that the allocation of humans to robots significantly affects the performance of the fleet, and that the novel Fleet-DAgger algorithm can achieve up to 8.8x higher ROHE than baselines. See https://tinyurl.com/fleet-dagger for supplemental material.","PeriodicalId":273870,"journal":{"name":"Conference on Robot Learning","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Fleet-DAgger: Interactive Robot Fleet Learning with Scalable Human Supervision\",\"authors\":\"Ryan Hoque, Lawrence Yunliang Chen, Satvik Sharma, K. Dharmarajan, Brijen Thananjeyan, P. Abbeel, Ken Goldberg\",\"doi\":\"10.48550/arXiv.2206.14349\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Commercial and industrial deployments of robot fleets at Amazon, Nimble, Plus One, Waymo, and Zoox query remote human teleoperators when robots are at risk or unable to make task progress. With continual learning, interventions from the remote pool of humans can also be used to improve the robot fleet control policy over time. A central question is how to effectively allocate limited human attention. Prior work addresses this in the single-robot, single-human setting; we formalize the Interactive Fleet Learning (IFL) setting, in which multiple robots interactively query and learn from multiple human supervisors. We propose Return on Human Effort (ROHE) as a new metric and Fleet-DAgger, a family of IFL algorithms. We present an open-source IFL benchmark suite of GPU-accelerated Isaac Gym environments for standardized evaluation and development of IFL algorithms. We compare a novel Fleet-DAgger algorithm to 4 baselines with 100 robots in simulation. We also perform a physical block-pushing experiment with 4 ABB YuMi robot arms and 2 remote humans. Experiments suggest that the allocation of humans to robots significantly affects the performance of the fleet, and that the novel Fleet-DAgger algorithm can achieve up to 8.8x higher ROHE than baselines. See https://tinyurl.com/fleet-dagger for supplemental material.\",\"PeriodicalId\":273870,\"journal\":{\"name\":\"Conference on Robot Learning\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference on Robot Learning\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2206.14349\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference on Robot Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2206.14349","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fleet-DAgger: Interactive Robot Fleet Learning with Scalable Human Supervision
Commercial and industrial deployments of robot fleets at Amazon, Nimble, Plus One, Waymo, and Zoox query remote human teleoperators when robots are at risk or unable to make task progress. With continual learning, interventions from the remote pool of humans can also be used to improve the robot fleet control policy over time. A central question is how to effectively allocate limited human attention. Prior work addresses this in the single-robot, single-human setting; we formalize the Interactive Fleet Learning (IFL) setting, in which multiple robots interactively query and learn from multiple human supervisors. We propose Return on Human Effort (ROHE) as a new metric and Fleet-DAgger, a family of IFL algorithms. We present an open-source IFL benchmark suite of GPU-accelerated Isaac Gym environments for standardized evaluation and development of IFL algorithms. We compare a novel Fleet-DAgger algorithm to 4 baselines with 100 robots in simulation. We also perform a physical block-pushing experiment with 4 ABB YuMi robot arms and 2 remote humans. Experiments suggest that the allocation of humans to robots significantly affects the performance of the fleet, and that the novel Fleet-DAgger algorithm can achieve up to 8.8x higher ROHE than baselines. See https://tinyurl.com/fleet-dagger for supplemental material.