引导局部搜索的MOEA/D:一些初步实验结果

Ahmad Alhindi, Qingfu Zhang
{"title":"引导局部搜索的MOEA/D:一些初步实验结果","authors":"Ahmad Alhindi, Qingfu Zhang","doi":"10.1109/CEEC.2013.6659455","DOIUrl":null,"url":null,"abstract":"Multiobjective Evolutionary Algorithm based on Decomposition (MOEA/D) decomposes a multiobjective optimisation into a number of single-objective problem and optimises them in a collaborative manner. This paper investigates how to use the Guided Local Search (GLS), a well-studied single objective heuristic to enhance MOEA/D performance. In our proposed approach, the GLS applies to these subproblems to escape local Pareto optimal solutions. The experimental studies have shown that MOEA/D with GLS outperforms the classical MOEA/D on a bi-objective travelling salesman problem.","PeriodicalId":309053,"journal":{"name":"2013 5th Computer Science and Electronic Engineering Conference (CEEC)","volume":"158 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"MOEA/D with guided local search: Some preliminary experimental results\",\"authors\":\"Ahmad Alhindi, Qingfu Zhang\",\"doi\":\"10.1109/CEEC.2013.6659455\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multiobjective Evolutionary Algorithm based on Decomposition (MOEA/D) decomposes a multiobjective optimisation into a number of single-objective problem and optimises them in a collaborative manner. This paper investigates how to use the Guided Local Search (GLS), a well-studied single objective heuristic to enhance MOEA/D performance. In our proposed approach, the GLS applies to these subproblems to escape local Pareto optimal solutions. The experimental studies have shown that MOEA/D with GLS outperforms the classical MOEA/D on a bi-objective travelling salesman problem.\",\"PeriodicalId\":309053,\"journal\":{\"name\":\"2013 5th Computer Science and Electronic Engineering Conference (CEEC)\",\"volume\":\"158 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 5th Computer Science and Electronic Engineering Conference (CEEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEEC.2013.6659455\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 5th Computer Science and Electronic Engineering Conference (CEEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEEC.2013.6659455","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

基于分解的多目标进化算法(MOEA/D)将一个多目标优化问题分解为多个单目标问题,并以协作的方式进行优化。本文研究了如何使用导引局部搜索(GLS)来提高MOEA/D性能,这是一种研究得很好的单目标启发式算法。在我们提出的方法中,GLS应用于这些子问题以逃避局部Pareto最优解。实验研究表明,在双目标旅行商问题上,基于GLS的MOEA/D优于经典的MOEA/D。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MOEA/D with guided local search: Some preliminary experimental results
Multiobjective Evolutionary Algorithm based on Decomposition (MOEA/D) decomposes a multiobjective optimisation into a number of single-objective problem and optimises them in a collaborative manner. This paper investigates how to use the Guided Local Search (GLS), a well-studied single objective heuristic to enhance MOEA/D performance. In our proposed approach, the GLS applies to these subproblems to escape local Pareto optimal solutions. The experimental studies have shown that MOEA/D with GLS outperforms the classical MOEA/D on a bi-objective travelling salesman problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信