对偶$k-$ Pell双复数及其若干恒等式

S. Halici, Şule Çürük
{"title":"对偶$k-$ Pell双复数及其若干恒等式","authors":"S. Halici, Şule Çürük","doi":"10.33401/fujma.718298","DOIUrl":null,"url":null,"abstract":"In the paper, we have considered the real and dual bicomplex numbers separately. Firstly, we examine the dual numbers and investigate the characteristic properties of them. Then, we give the definition, feature and related concepts about bicomplex numbers. And we define the number of dual $k-$ Pell bicomplex numbers that are not found for the first time in the literature and we examine the norm and conjugate properties of these numbers. We give equations about conjugates and give also some important characteristic of these newly defined numbers, and we write the recursive correlations of these numbers. Using these relations we give some important identities such as Vajda's, Honsberger's and d'Ocagne identities.","PeriodicalId":199091,"journal":{"name":"Fundamental Journal of Mathematics and Applications","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"On Dual $k-$ Pell Bicomplex Numbers and Some Identities Including Them\",\"authors\":\"S. Halici, Şule Çürük\",\"doi\":\"10.33401/fujma.718298\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the paper, we have considered the real and dual bicomplex numbers separately. Firstly, we examine the dual numbers and investigate the characteristic properties of them. Then, we give the definition, feature and related concepts about bicomplex numbers. And we define the number of dual $k-$ Pell bicomplex numbers that are not found for the first time in the literature and we examine the norm and conjugate properties of these numbers. We give equations about conjugates and give also some important characteristic of these newly defined numbers, and we write the recursive correlations of these numbers. Using these relations we give some important identities such as Vajda's, Honsberger's and d'Ocagne identities.\",\"PeriodicalId\":199091,\"journal\":{\"name\":\"Fundamental Journal of Mathematics and Applications\",\"volume\":\"84 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fundamental Journal of Mathematics and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33401/fujma.718298\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fundamental Journal of Mathematics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33401/fujma.718298","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文分别考虑了实数和对偶双复数。首先对对偶数进行了研究,研究了对偶数的特征性质。然后给出了双复数的定义、特征和相关概念。定义了文献中首次未发现的对偶k- Pell双复数的个数,并研究了这些数的范数和共轭性质。我们给出了关于共轭的方程,也给出了这些新定义数的一些重要特征,并写出了这些数的递归相关性。利用这些关系,我们给出了一些重要的恒等式,如Vajda恒等式、Honsberger恒等式和d’ocagne恒等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Dual $k-$ Pell Bicomplex Numbers and Some Identities Including Them
In the paper, we have considered the real and dual bicomplex numbers separately. Firstly, we examine the dual numbers and investigate the characteristic properties of them. Then, we give the definition, feature and related concepts about bicomplex numbers. And we define the number of dual $k-$ Pell bicomplex numbers that are not found for the first time in the literature and we examine the norm and conjugate properties of these numbers. We give equations about conjugates and give also some important characteristic of these newly defined numbers, and we write the recursive correlations of these numbers. Using these relations we give some important identities such as Vajda's, Honsberger's and d'Ocagne identities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信