基于GI0分布间测地线距离的SAR图像区域识别

Jose Naranjo Torres, J. Gambini, A. Frery
{"title":"基于GI0分布间测地线距离的SAR图像区域识别","authors":"Jose Naranjo Torres, J. Gambini, A. Frery","doi":"10.1109/APSAR.2015.7306274","DOIUrl":null,"url":null,"abstract":"This paper presents a new method to measure the separability between two different regions in SAR imagery, using the geodesic distance and the GI0 distribution. The method can be used in SAR image segmentation, among other applications. It is well known that the GI0 distribution is able to characterize different regions in monopolarized SAR imagery. It is indexed by three parameters: the number of looks (which can be estimated in the whole image), a scale parameter and the texture parameter. A formula for the geodesic distance is computed in terms of the texture parameter, which is estimated using Maximum Likelihood. The geodesic distance equation is solved using numerical integration. The new algorithm has been applied to synthetic and real data with promising results.","PeriodicalId":350698,"journal":{"name":"2015 IEEE 5th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR)","volume":"172 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Region discrimination in SAR imagery using the geodesic distance between GI0 distributions\",\"authors\":\"Jose Naranjo Torres, J. Gambini, A. Frery\",\"doi\":\"10.1109/APSAR.2015.7306274\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a new method to measure the separability between two different regions in SAR imagery, using the geodesic distance and the GI0 distribution. The method can be used in SAR image segmentation, among other applications. It is well known that the GI0 distribution is able to characterize different regions in monopolarized SAR imagery. It is indexed by three parameters: the number of looks (which can be estimated in the whole image), a scale parameter and the texture parameter. A formula for the geodesic distance is computed in terms of the texture parameter, which is estimated using Maximum Likelihood. The geodesic distance equation is solved using numerical integration. The new algorithm has been applied to synthetic and real data with promising results.\",\"PeriodicalId\":350698,\"journal\":{\"name\":\"2015 IEEE 5th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR)\",\"volume\":\"172 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 5th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APSAR.2015.7306274\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 5th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APSAR.2015.7306274","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种利用测地线距离和GI0分布测量SAR图像中两个不同区域之间可分性的新方法。该方法可用于SAR图像分割,以及其他应用。众所周知,在单极SAR图像中,GI0分布能够表征不同的区域。它由三个参数索引:外观的数量(可以在整个图像中估计),比例参数和纹理参数。根据纹理参数计算测地线距离公式,使用最大似然估计纹理参数。采用数值积分法求解测地线距离方程。该算法已应用于合成数据和实际数据,取得了良好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Region discrimination in SAR imagery using the geodesic distance between GI0 distributions
This paper presents a new method to measure the separability between two different regions in SAR imagery, using the geodesic distance and the GI0 distribution. The method can be used in SAR image segmentation, among other applications. It is well known that the GI0 distribution is able to characterize different regions in monopolarized SAR imagery. It is indexed by three parameters: the number of looks (which can be estimated in the whole image), a scale parameter and the texture parameter. A formula for the geodesic distance is computed in terms of the texture parameter, which is estimated using Maximum Likelihood. The geodesic distance equation is solved using numerical integration. The new algorithm has been applied to synthetic and real data with promising results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信