遗传算法结合支持向量机构建入侵检测系统

S. Saha, A. Sairam, A. Yadav, Asif Ekbal
{"title":"遗传算法结合支持向量机构建入侵检测系统","authors":"S. Saha, A. Sairam, A. Yadav, Asif Ekbal","doi":"10.1145/2345396.2345489","DOIUrl":null,"url":null,"abstract":"In this paper, we develop an intrusion detection system (IDS) based on machine learning. We employ genetic algorithm (GA) along with Support Vector Machine (SVM) for automatically determining the appropriate set of features. The idea is then developed into a fully functional IDS. Experiments of testing the IDS on the benchmark KDD CUP 99 datasets are presented. Results show encouraging performance that opens a avenue for further research.","PeriodicalId":290400,"journal":{"name":"International Conference on Advances in Computing, Communications and Informatics","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Genetic algorithm combined with support vector machine for building an intrusion detection system\",\"authors\":\"S. Saha, A. Sairam, A. Yadav, Asif Ekbal\",\"doi\":\"10.1145/2345396.2345489\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we develop an intrusion detection system (IDS) based on machine learning. We employ genetic algorithm (GA) along with Support Vector Machine (SVM) for automatically determining the appropriate set of features. The idea is then developed into a fully functional IDS. Experiments of testing the IDS on the benchmark KDD CUP 99 datasets are presented. Results show encouraging performance that opens a avenue for further research.\",\"PeriodicalId\":290400,\"journal\":{\"name\":\"International Conference on Advances in Computing, Communications and Informatics\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Advances in Computing, Communications and Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2345396.2345489\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Advances in Computing, Communications and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2345396.2345489","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

本文开发了一种基于机器学习的入侵检测系统(IDS)。我们采用遗传算法(GA)和支持向量机(SVM)来自动确定合适的特征集。然后将这个想法发展成一个功能齐全的IDS。给出了在基准KDD CUP 99数据集上测试IDS的实验。结果显示出令人鼓舞的表现,为进一步的研究开辟了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Genetic algorithm combined with support vector machine for building an intrusion detection system
In this paper, we develop an intrusion detection system (IDS) based on machine learning. We employ genetic algorithm (GA) along with Support Vector Machine (SVM) for automatically determining the appropriate set of features. The idea is then developed into a fully functional IDS. Experiments of testing the IDS on the benchmark KDD CUP 99 datasets are presented. Results show encouraging performance that opens a avenue for further research.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信