基于蒙特卡罗的信用衍生品定价的FPGA加速

Alexander Kaganov, P. Chow, A. Lakhany
{"title":"基于蒙特卡罗的信用衍生品定价的FPGA加速","authors":"Alexander Kaganov, P. Chow, A. Lakhany","doi":"10.1109/FPL.2008.4629953","DOIUrl":null,"url":null,"abstract":"In recent years the financial world has seen an increasing demand for faster risk simulations, driven by growth in client portfolios. Traditionally many financial models employ Monte-Carlo simulation, which can take excessively long to compute in software. This paper describes a hardware implementation for collateralized debt obligations (CDOs) pricing, using the one-factor Gaussian copula (OFGC) model. We explore the precision requirements and the resulting resource utilization for each number representation. Our results show that our hardware implementation mapped onto a Xilinx XC5VSX50T is over 63 times faster than a software implementation running on a 3.4 GHz Intel Xeon processor.","PeriodicalId":137963,"journal":{"name":"2008 International Conference on Field Programmable Logic and Applications","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":"{\"title\":\"FPGA acceleration of Monte-Carlo based credit derivative pricing\",\"authors\":\"Alexander Kaganov, P. Chow, A. Lakhany\",\"doi\":\"10.1109/FPL.2008.4629953\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years the financial world has seen an increasing demand for faster risk simulations, driven by growth in client portfolios. Traditionally many financial models employ Monte-Carlo simulation, which can take excessively long to compute in software. This paper describes a hardware implementation for collateralized debt obligations (CDOs) pricing, using the one-factor Gaussian copula (OFGC) model. We explore the precision requirements and the resulting resource utilization for each number representation. Our results show that our hardware implementation mapped onto a Xilinx XC5VSX50T is over 63 times faster than a software implementation running on a 3.4 GHz Intel Xeon processor.\",\"PeriodicalId\":137963,\"journal\":{\"name\":\"2008 International Conference on Field Programmable Logic and Applications\",\"volume\":\"78 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"34\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 International Conference on Field Programmable Logic and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FPL.2008.4629953\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 International Conference on Field Programmable Logic and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FPL.2008.4629953","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

摘要

近年来,在客户投资组合增长的推动下,金融界对更快的风险模拟的需求不断增加。传统上,许多金融模型采用蒙特卡罗模拟,这可能需要很长时间才能在软件中计算。本文描述了一种使用单因素高斯copula (OFGC)模型的抵押债务凭证(cdo)定价的硬件实现。我们将探讨每种数字表示的精度要求和由此产生的资源利用率。我们的结果表明,我们的硬件实现映射到Xilinx xc5vs50t比运行在3.4 GHz英特尔至强处理器上的软件实现快63倍以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
FPGA acceleration of Monte-Carlo based credit derivative pricing
In recent years the financial world has seen an increasing demand for faster risk simulations, driven by growth in client portfolios. Traditionally many financial models employ Monte-Carlo simulation, which can take excessively long to compute in software. This paper describes a hardware implementation for collateralized debt obligations (CDOs) pricing, using the one-factor Gaussian copula (OFGC) model. We explore the precision requirements and the resulting resource utilization for each number representation. Our results show that our hardware implementation mapped onto a Xilinx XC5VSX50T is over 63 times faster than a software implementation running on a 3.4 GHz Intel Xeon processor.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信