基于广义规范的共同空间模式

Jangwoo Park, Wonzoo Chung
{"title":"基于广义规范的共同空间模式","authors":"Jangwoo Park, Wonzoo Chung","doi":"10.1109/IWW-BCI.2013.6506623","DOIUrl":null,"url":null,"abstract":"The Common Spatial Patterns (CSP) algorithm is commonly used to finds spatial filters for classification of electroencephalogram (EEG) signals. However, conventional CSP is sensitive to outliers and artifacts because it is based on variance using L2-norm. In this paper, we consider generalized Lp norm based CSP, called CSP-Lp, and verify whichp is optimal for CSP-Lp by maximizing the Lp norm ratio of filtered dispersion of one class to the other class. The spatial filters of CSP-Lp are obtained empirically. Simulation result on a toy example shows the robustness of CSP-Lp depending on Lp-norm.","PeriodicalId":129758,"journal":{"name":"2013 International Winter Workshop on Brain-Computer Interface (BCI)","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Common spatial patterns based on generalized norms\",\"authors\":\"Jangwoo Park, Wonzoo Chung\",\"doi\":\"10.1109/IWW-BCI.2013.6506623\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Common Spatial Patterns (CSP) algorithm is commonly used to finds spatial filters for classification of electroencephalogram (EEG) signals. However, conventional CSP is sensitive to outliers and artifacts because it is based on variance using L2-norm. In this paper, we consider generalized Lp norm based CSP, called CSP-Lp, and verify whichp is optimal for CSP-Lp by maximizing the Lp norm ratio of filtered dispersion of one class to the other class. The spatial filters of CSP-Lp are obtained empirically. Simulation result on a toy example shows the robustness of CSP-Lp depending on Lp-norm.\",\"PeriodicalId\":129758,\"journal\":{\"name\":\"2013 International Winter Workshop on Brain-Computer Interface (BCI)\",\"volume\":\"80 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Winter Workshop on Brain-Computer Interface (BCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWW-BCI.2013.6506623\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Winter Workshop on Brain-Computer Interface (BCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWW-BCI.2013.6506623","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

公共空间模式(CSP)算法通常用于寻找脑电图(EEG)信号分类的空间滤波器。然而,传统的CSP对异常值和人为因素很敏感,因为它是基于使用l2 -范数的方差。本文考虑基于广义Lp范数的CSP,称为CSP-Lp,并通过最大化一类与另一类的过滤色散的Lp范数之比来验证CSP-Lp最优。经验得到了CSP-Lp的空间滤波器。仿真结果表明CSP-Lp的鲁棒性依赖于lp -范数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Common spatial patterns based on generalized norms
The Common Spatial Patterns (CSP) algorithm is commonly used to finds spatial filters for classification of electroencephalogram (EEG) signals. However, conventional CSP is sensitive to outliers and artifacts because it is based on variance using L2-norm. In this paper, we consider generalized Lp norm based CSP, called CSP-Lp, and verify whichp is optimal for CSP-Lp by maximizing the Lp norm ratio of filtered dispersion of one class to the other class. The spatial filters of CSP-Lp are obtained empirically. Simulation result on a toy example shows the robustness of CSP-Lp depending on Lp-norm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信