{"title":"平均野外游戏","authors":"","doi":"10.1090/psapm/078","DOIUrl":null,"url":null,"abstract":"Definition Mean Field Game theory studies the existence of Nash equilibria, together with the individual strategies which (MFG) generate them, in games involving a large number of agents modeled by controlled stochastic dynamical systems. This is achieved by exploiting the relationship between the finite and corresponding infinite limit population problems. The solution of the infinite population problem is given by the fundamental MFG Hamilton-Jacobi-Bellman (HJB) and Fokker-Planck-Kolmogorov (FPK) equations which are linked by the state distribution of a generic agent, otherwise known as the system's mean field.","PeriodicalId":427912,"journal":{"name":"Proceedings of Symposia in Applied Mathematics","volume":"200 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":"{\"title\":\"Mean Field Games\",\"authors\":\"\",\"doi\":\"10.1090/psapm/078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Definition Mean Field Game theory studies the existence of Nash equilibria, together with the individual strategies which (MFG) generate them, in games involving a large number of agents modeled by controlled stochastic dynamical systems. This is achieved by exploiting the relationship between the finite and corresponding infinite limit population problems. The solution of the infinite population problem is given by the fundamental MFG Hamilton-Jacobi-Bellman (HJB) and Fokker-Planck-Kolmogorov (FPK) equations which are linked by the state distribution of a generic agent, otherwise known as the system's mean field.\",\"PeriodicalId\":427912,\"journal\":{\"name\":\"Proceedings of Symposia in Applied Mathematics\",\"volume\":\"200 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"39\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of Symposia in Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/psapm/078\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Symposia in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/psapm/078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Definition Mean Field Game theory studies the existence of Nash equilibria, together with the individual strategies which (MFG) generate them, in games involving a large number of agents modeled by controlled stochastic dynamical systems. This is achieved by exploiting the relationship between the finite and corresponding infinite limit population problems. The solution of the infinite population problem is given by the fundamental MFG Hamilton-Jacobi-Bellman (HJB) and Fokker-Planck-Kolmogorov (FPK) equations which are linked by the state distribution of a generic agent, otherwise known as the system's mean field.