基于分区的古吉拉特手写体数字识别方法比较分析

Ankit Sharma, D. Adhyaru, T. Zaveri, Priyank Thakkar
{"title":"基于分区的古吉拉特手写体数字识别方法比较分析","authors":"Ankit Sharma, D. Adhyaru, T. Zaveri, Priyank Thakkar","doi":"10.1109/NUICONE.2015.7449632","DOIUrl":null,"url":null,"abstract":"Gujarati is one of the ancient Indian languages spoken widely by the people of Gujarat state. This paper is concerned with the recognition of handwritten Gujarati numerals. For recognition of Gujarati numerals zoning based Feature extraction method is used. Numeral image is divided in 16×16, 8×8, 4×4 and 2×2 Zones. After feature extraction through the zoning method, Naive Bayes classifier and multilayer feed forward neural network classifier are implemented for the classification of numerals. For the database generation, 14,000 samples of each numeral are used. The overall recognition rates of this method used for recognition of Gujarati numeral using 16×16, 8×8, 4×4 and 2×2 zoning with neural network are 93.03%, 95.92%, 91.89% and 61.78% and with Naive Bayes classifier are 75%, 85.60%, 81% and 53.75% respectively.","PeriodicalId":131332,"journal":{"name":"2015 5th Nirma University International Conference on Engineering (NUiCONE)","volume":"245 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Comparative analysis of zoning based methods for Gujarati handwritten numeral recognition\",\"authors\":\"Ankit Sharma, D. Adhyaru, T. Zaveri, Priyank Thakkar\",\"doi\":\"10.1109/NUICONE.2015.7449632\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gujarati is one of the ancient Indian languages spoken widely by the people of Gujarat state. This paper is concerned with the recognition of handwritten Gujarati numerals. For recognition of Gujarati numerals zoning based Feature extraction method is used. Numeral image is divided in 16×16, 8×8, 4×4 and 2×2 Zones. After feature extraction through the zoning method, Naive Bayes classifier and multilayer feed forward neural network classifier are implemented for the classification of numerals. For the database generation, 14,000 samples of each numeral are used. The overall recognition rates of this method used for recognition of Gujarati numeral using 16×16, 8×8, 4×4 and 2×2 zoning with neural network are 93.03%, 95.92%, 91.89% and 61.78% and with Naive Bayes classifier are 75%, 85.60%, 81% and 53.75% respectively.\",\"PeriodicalId\":131332,\"journal\":{\"name\":\"2015 5th Nirma University International Conference on Engineering (NUiCONE)\",\"volume\":\"245 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 5th Nirma University International Conference on Engineering (NUiCONE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NUICONE.2015.7449632\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 5th Nirma University International Conference on Engineering (NUiCONE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NUICONE.2015.7449632","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

古吉拉特语是古吉拉特邦人民广泛使用的古印度语言之一。这篇论文是关于手写古吉拉特数字的识别。对于古吉拉特数字的识别,采用了基于分区的特征提取方法。数字图像分为16×16、8×8、4×4和2×2四个区域。通过分区法提取特征后,实现朴素贝叶斯分类器和多层前馈神经网络分类器对数字进行分类。对于数据库生成,每个数字使用14,000个样本。该方法对16×16、8×8、4×4和2×2分区识别古吉拉特数字的总体识别率分别为93.03%、95.92%、91.89%和61.78%,对朴素贝叶斯分类器的总体识别率分别为75%、85.60%、81%和53.75%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparative analysis of zoning based methods for Gujarati handwritten numeral recognition
Gujarati is one of the ancient Indian languages spoken widely by the people of Gujarat state. This paper is concerned with the recognition of handwritten Gujarati numerals. For recognition of Gujarati numerals zoning based Feature extraction method is used. Numeral image is divided in 16×16, 8×8, 4×4 and 2×2 Zones. After feature extraction through the zoning method, Naive Bayes classifier and multilayer feed forward neural network classifier are implemented for the classification of numerals. For the database generation, 14,000 samples of each numeral are used. The overall recognition rates of this method used for recognition of Gujarati numeral using 16×16, 8×8, 4×4 and 2×2 zoning with neural network are 93.03%, 95.92%, 91.89% and 61.78% and with Naive Bayes classifier are 75%, 85.60%, 81% and 53.75% respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信