使用物联网的智能家居环境智能

Hakilo Sabit, P. Chong, J. Kilby
{"title":"使用物联网的智能家居环境智能","authors":"Hakilo Sabit, P. Chong, J. Kilby","doi":"10.1109/ITNAC46935.2019.9078001","DOIUrl":null,"url":null,"abstract":"This article presents an ambience intelligence application for smart home systems for efficient use of electricity, enhance comfort zone, independence of living and security. The system integrates smart home occupant's identification, sensors-actuators deployment, a gateway Hub, machine learning, and cloud computing components to realize the objectives of smart living. A Mobile phone MAC-address based occupant identification and machine learning algorithms are proposed to address the multiple smart home occupant problems and an instant user control versus rule-based control conflicts. Results show that machine learning algorithm could learn the ambience preferences of multiple occupants when trained on a large enough dataset. The proposed system can implement ambient intelligence applications in smart home.","PeriodicalId":407514,"journal":{"name":"2019 29th International Telecommunication Networks and Applications Conference (ITNAC)","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Ambient Intelligence for Smart Home using The Internet of Things\",\"authors\":\"Hakilo Sabit, P. Chong, J. Kilby\",\"doi\":\"10.1109/ITNAC46935.2019.9078001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article presents an ambience intelligence application for smart home systems for efficient use of electricity, enhance comfort zone, independence of living and security. The system integrates smart home occupant's identification, sensors-actuators deployment, a gateway Hub, machine learning, and cloud computing components to realize the objectives of smart living. A Mobile phone MAC-address based occupant identification and machine learning algorithms are proposed to address the multiple smart home occupant problems and an instant user control versus rule-based control conflicts. Results show that machine learning algorithm could learn the ambience preferences of multiple occupants when trained on a large enough dataset. The proposed system can implement ambient intelligence applications in smart home.\",\"PeriodicalId\":407514,\"journal\":{\"name\":\"2019 29th International Telecommunication Networks and Applications Conference (ITNAC)\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 29th International Telecommunication Networks and Applications Conference (ITNAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITNAC46935.2019.9078001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 29th International Telecommunication Networks and Applications Conference (ITNAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITNAC46935.2019.9078001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文介绍了一种环境智能在智能家居系统中的应用,以有效利用电力,增强舒适区,生活的独立性和安全性。该系统集成了智能家居居住者的识别、传感器-执行器部署、网关Hub、机器学习和云计算组件,以实现智能生活的目标。提出了一种基于手机mac地址的占用者识别和机器学习算法,以解决智能家居中的多个占用者问题以及即时用户控制与基于规则的控制冲突。结果表明,当在足够大的数据集上训练时,机器学习算法可以学习到多个居住者的环境偏好。该系统可实现环境智能在智能家居中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ambient Intelligence for Smart Home using The Internet of Things
This article presents an ambience intelligence application for smart home systems for efficient use of electricity, enhance comfort zone, independence of living and security. The system integrates smart home occupant's identification, sensors-actuators deployment, a gateway Hub, machine learning, and cloud computing components to realize the objectives of smart living. A Mobile phone MAC-address based occupant identification and machine learning algorithms are proposed to address the multiple smart home occupant problems and an instant user control versus rule-based control conflicts. Results show that machine learning algorithm could learn the ambience preferences of multiple occupants when trained on a large enough dataset. The proposed system can implement ambient intelligence applications in smart home.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信