重新审视欧拉数:超立方体的切片

Kingo Kobayashi, Hajime Sato, M. Hoshi, H. Morita
{"title":"重新审视欧拉数:超立方体的切片","authors":"Kingo Kobayashi, Hajime Sato, M. Hoshi, H. Morita","doi":"10.1109/ITA.2014.6804233","DOIUrl":null,"url":null,"abstract":"In this talk, we provide a simple proof on an interesting equality connecting the number of permutations of 1, ..., n with k runs, i.e., Eulerian numbers to the volumes of slices between k-1 and k of the n-dimensional hypercube along the diagonal axis. The proof is simple and elegant, but the detail structures in the problem are left to be unclear. In order to get more information on this problem, we give the second proof relied on the direct calculation of the related numbers and the volumes. By computing conditional probabilities with respect to slices, we can obtain the known recurrence relation on Eulerian numbers.","PeriodicalId":338302,"journal":{"name":"2014 Information Theory and Applications Workshop (ITA)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Eulerian numbers revisited: Slices of hypercube\",\"authors\":\"Kingo Kobayashi, Hajime Sato, M. Hoshi, H. Morita\",\"doi\":\"10.1109/ITA.2014.6804233\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this talk, we provide a simple proof on an interesting equality connecting the number of permutations of 1, ..., n with k runs, i.e., Eulerian numbers to the volumes of slices between k-1 and k of the n-dimensional hypercube along the diagonal axis. The proof is simple and elegant, but the detail structures in the problem are left to be unclear. In order to get more information on this problem, we give the second proof relied on the direct calculation of the related numbers and the volumes. By computing conditional probabilities with respect to slices, we can obtain the known recurrence relation on Eulerian numbers.\",\"PeriodicalId\":338302,\"journal\":{\"name\":\"2014 Information Theory and Applications Workshop (ITA)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 Information Theory and Applications Workshop (ITA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITA.2014.6804233\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Information Theory and Applications Workshop (ITA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITA.2014.6804233","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这次演讲中,我们提供了一个简单的证明,证明了一个有趣的等式,它连接了1,…的排列数。, n次运行k次,即欧拉数对n维超立方体的k-1和k之间的切片沿对角线轴的体积。证明是简单而优雅的,但问题的细节结构尚不清楚。为了得到更多关于这个问题的信息,我们在直接计算相关数和体积的基础上给出了第二个证明。通过计算关于切片的条件概率,我们可以得到已知的欧拉数递推关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Eulerian numbers revisited: Slices of hypercube
In this talk, we provide a simple proof on an interesting equality connecting the number of permutations of 1, ..., n with k runs, i.e., Eulerian numbers to the volumes of slices between k-1 and k of the n-dimensional hypercube along the diagonal axis. The proof is simple and elegant, but the detail structures in the problem are left to be unclear. In order to get more information on this problem, we give the second proof relied on the direct calculation of the related numbers and the volumes. By computing conditional probabilities with respect to slices, we can obtain the known recurrence relation on Eulerian numbers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信