信号子空间提取算法在混响存在下的检测

Wei Li, Xiaochuan Ma, Yun Zhu, C. Hou
{"title":"信号子空间提取算法在混响存在下的检测","authors":"Wei Li, Xiaochuan Ma, Yun Zhu, C. Hou","doi":"10.1109/ICOSP.2008.4697668","DOIUrl":null,"url":null,"abstract":"A new algorithm called signal subspace extraction is presented for detecting and estimating the target echo in reverberation. The new algorithm maintains the benefit of the principal component inverse algorithm, moreover shows better performance with a more reasonable reverberation model. Further, a block forward matrix is proposed to extend the algorithm to the space-time array problem. The new algorithm also allows good echo separation. Examples are presented using both real, active-sonar data and simulated data.","PeriodicalId":445699,"journal":{"name":"2008 9th International Conference on Signal Processing","volume":"188 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Signal Subspace Extraction algorithm for detection in the presence of reverberation\",\"authors\":\"Wei Li, Xiaochuan Ma, Yun Zhu, C. Hou\",\"doi\":\"10.1109/ICOSP.2008.4697668\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new algorithm called signal subspace extraction is presented for detecting and estimating the target echo in reverberation. The new algorithm maintains the benefit of the principal component inverse algorithm, moreover shows better performance with a more reasonable reverberation model. Further, a block forward matrix is proposed to extend the algorithm to the space-time array problem. The new algorithm also allows good echo separation. Examples are presented using both real, active-sonar data and simulated data.\",\"PeriodicalId\":445699,\"journal\":{\"name\":\"2008 9th International Conference on Signal Processing\",\"volume\":\"188 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 9th International Conference on Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICOSP.2008.4697668\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 9th International Conference on Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOSP.2008.4697668","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种新的混响目标回波检测和估计算法——信号子空间提取算法。新算法在保留主成分逆算法优点的基础上,采用更合理的混响模型,表现出更好的性能。在此基础上,提出了块前向矩阵,将该算法扩展到时空阵列问题。新算法还可以实现很好的回波分离。给出了使用真实、主动声呐数据和模拟数据的实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Signal Subspace Extraction algorithm for detection in the presence of reverberation
A new algorithm called signal subspace extraction is presented for detecting and estimating the target echo in reverberation. The new algorithm maintains the benefit of the principal component inverse algorithm, moreover shows better performance with a more reasonable reverberation model. Further, a block forward matrix is proposed to extend the algorithm to the space-time array problem. The new algorithm also allows good echo separation. Examples are presented using both real, active-sonar data and simulated data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信