素数功率长度的最优局部可修恒环码

Wei Zhao, K. Shum, Shenghao Yang
{"title":"素数功率长度的最优局部可修恒环码","authors":"Wei Zhao, K. Shum, Shenghao Yang","doi":"10.1109/ISIT44484.2020.9174100","DOIUrl":null,"url":null,"abstract":"A locally repairable code (LRC) with locality r allows for the recovery of any erased symbol of a codeword by accessing only r other symbols of the same codeword. The LRCs achieving the Singleton-like bound are said to be optimal. In this paper, we completely characterize the locality of any constacyclic codes of length ps over finite fields. Using this characterization, we determine all the optimal constacyclic LRCs of prime power lengths over finite fields, i.e., there are no other optimal constacyclic LRCs of prime power length except for those we characterized in this paper. We classify all the optimal constacyclic LRCs into seven classes. The first six classes of constacyclic LRCs classified in this paper have unbounded length, and can achieve smaller locality comparing to those codes constructed by Luo, Xing and Yuan, which also provide unbounded length.","PeriodicalId":159311,"journal":{"name":"2020 IEEE International Symposium on Information Theory (ISIT)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Optimal Locally Repairable Constacyclic Codes of Prime Power Lengths\",\"authors\":\"Wei Zhao, K. Shum, Shenghao Yang\",\"doi\":\"10.1109/ISIT44484.2020.9174100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A locally repairable code (LRC) with locality r allows for the recovery of any erased symbol of a codeword by accessing only r other symbols of the same codeword. The LRCs achieving the Singleton-like bound are said to be optimal. In this paper, we completely characterize the locality of any constacyclic codes of length ps over finite fields. Using this characterization, we determine all the optimal constacyclic LRCs of prime power lengths over finite fields, i.e., there are no other optimal constacyclic LRCs of prime power length except for those we characterized in this paper. We classify all the optimal constacyclic LRCs into seven classes. The first six classes of constacyclic LRCs classified in this paper have unbounded length, and can achieve smaller locality comparing to those codes constructed by Luo, Xing and Yuan, which also provide unbounded length.\",\"PeriodicalId\":159311,\"journal\":{\"name\":\"2020 IEEE International Symposium on Information Theory (ISIT)\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Symposium on Information Theory (ISIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT44484.2020.9174100\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Symposium on Information Theory (ISIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT44484.2020.9174100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

局部性为r的局部可修复码(LRC)允许通过仅访问同一码字的r个其他符号来恢复被擦除的码字符号。达到类单态边界的lrc被称为最优的。本文完全刻画了有限域上任意长度为ps的恒环码的局部性。利用这一性质,我们确定了有限域上所有素数幂长的最优恒圈lrc,即除了本文所描述的最优恒圈lrc外,不存在其他素数幂长的最优恒圈lrc。我们将所有最优恒循环lrc分为7类。本文分类的前6类恒环lrc具有无界长度,与同样具有无界长度的Luo、Xing和Yuan构造的码相比,具有更小的局部性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal Locally Repairable Constacyclic Codes of Prime Power Lengths
A locally repairable code (LRC) with locality r allows for the recovery of any erased symbol of a codeword by accessing only r other symbols of the same codeword. The LRCs achieving the Singleton-like bound are said to be optimal. In this paper, we completely characterize the locality of any constacyclic codes of length ps over finite fields. Using this characterization, we determine all the optimal constacyclic LRCs of prime power lengths over finite fields, i.e., there are no other optimal constacyclic LRCs of prime power length except for those we characterized in this paper. We classify all the optimal constacyclic LRCs into seven classes. The first six classes of constacyclic LRCs classified in this paper have unbounded length, and can achieve smaller locality comparing to those codes constructed by Luo, Xing and Yuan, which also provide unbounded length.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信