{"title":"浮点往复器在FPGA上的高效实现","authors":"M. Jaiswal, N. Chandrachoodan","doi":"10.1109/VLSI.Design.2009.12","DOIUrl":null,"url":null,"abstract":"In this paper we have presented an efficient FPGA implementation of a reciprocator for both IEEE single-precision and double-precision floating point numbers. The method is based on the use of look-up tables and partial block multipliers. Compared with previously reported work, the modules occupy less area with a higher performance and less latency. The designs trade off either 1 unit in last-place (ulp) or 2 ulp of accuracy (for double or single precision respectively), without rounding, to obtain a better implementation. Rounding can also be added to the design to restore some accuracy at a slight cost in area.","PeriodicalId":267121,"journal":{"name":"2009 22nd International Conference on VLSI Design","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Efficient Implementation of Floating-Point Reciprocator on FPGA\",\"authors\":\"M. Jaiswal, N. Chandrachoodan\",\"doi\":\"10.1109/VLSI.Design.2009.12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we have presented an efficient FPGA implementation of a reciprocator for both IEEE single-precision and double-precision floating point numbers. The method is based on the use of look-up tables and partial block multipliers. Compared with previously reported work, the modules occupy less area with a higher performance and less latency. The designs trade off either 1 unit in last-place (ulp) or 2 ulp of accuracy (for double or single precision respectively), without rounding, to obtain a better implementation. Rounding can also be added to the design to restore some accuracy at a slight cost in area.\",\"PeriodicalId\":267121,\"journal\":{\"name\":\"2009 22nd International Conference on VLSI Design\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 22nd International Conference on VLSI Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VLSI.Design.2009.12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 22nd International Conference on VLSI Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSI.Design.2009.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Efficient Implementation of Floating-Point Reciprocator on FPGA
In this paper we have presented an efficient FPGA implementation of a reciprocator for both IEEE single-precision and double-precision floating point numbers. The method is based on the use of look-up tables and partial block multipliers. Compared with previously reported work, the modules occupy less area with a higher performance and less latency. The designs trade off either 1 unit in last-place (ulp) or 2 ulp of accuracy (for double or single precision respectively), without rounding, to obtain a better implementation. Rounding can also be added to the design to restore some accuracy at a slight cost in area.