广义可微模糊微分方程的改进预测校正法

M. Shahryari, S. Salahshour
{"title":"广义可微模糊微分方程的改进预测校正法","authors":"M. Shahryari, S. Salahshour","doi":"10.5899/2012/JFSVA-00121","DOIUrl":null,"url":null,"abstract":"In this paper, an improved predictor-corrector methods (IPC) to solve fuzzy differential equation under generalized differentiability are discussed. The methods proposed here are based on generalized characterization theorem. Using the Generalized Characterization we can translate a fuzzy differential equation into two ODE systems. Also, the convergence and stability of the proposed methods are given and their application are illustrated with numerical example.","PeriodicalId":308518,"journal":{"name":"Journal of Fuzzy Set Valued Analysis","volume":"197 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Improved predictor-corrector method for solving fuzzy differential equations under generalized differentiability\",\"authors\":\"M. Shahryari, S. Salahshour\",\"doi\":\"10.5899/2012/JFSVA-00121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, an improved predictor-corrector methods (IPC) to solve fuzzy differential equation under generalized differentiability are discussed. The methods proposed here are based on generalized characterization theorem. Using the Generalized Characterization we can translate a fuzzy differential equation into two ODE systems. Also, the convergence and stability of the proposed methods are given and their application are illustrated with numerical example.\",\"PeriodicalId\":308518,\"journal\":{\"name\":\"Journal of Fuzzy Set Valued Analysis\",\"volume\":\"197 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fuzzy Set Valued Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5899/2012/JFSVA-00121\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fuzzy Set Valued Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5899/2012/JFSVA-00121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

本文讨论了求解广义可微模糊微分方程的一种改进的预测校正方法。本文提出的方法是基于广义表征定理的。利用广义表征,我们可以将一个模糊微分方程转化为两个ODE系统。给出了该方法的收敛性和稳定性,并通过数值算例说明了该方法的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improved predictor-corrector method for solving fuzzy differential equations under generalized differentiability
In this paper, an improved predictor-corrector methods (IPC) to solve fuzzy differential equation under generalized differentiability are discussed. The methods proposed here are based on generalized characterization theorem. Using the Generalized Characterization we can translate a fuzzy differential equation into two ODE systems. Also, the convergence and stability of the proposed methods are given and their application are illustrated with numerical example.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信