不确定双层背包问题的二元智能狼群算法

Qi Yao, Xue Junjie, Wang Ying, Meng Xiangfei, Lv Maolong
{"title":"不确定双层背包问题的二元智能狼群算法","authors":"Qi Yao, Xue Junjie, Wang Ying, Meng Xiangfei, Lv Maolong","doi":"10.1109/CIAPP.2017.8167195","DOIUrl":null,"url":null,"abstract":"To apply the smart wolf pack algorithm to solve the uncertain bilevel knapsack problem effectively, a binary smart wolf pack algorithm is designed. Firstly, the paper proposes an uncertain bilevel knapsack problem model by introducing uncertainty theory to the traditional bilevel knapsack problem model. Secondly, to solve the model of uncertain bilevel knapsack problem by the algorithm directly, we convert the uncertain bilevel knapsack problem model to an equivalent deterministic model. After that, a binary smart wolf pack algorithm based on the smart wolf pack algorithm is proposed, and the validity and efficiency of the binary smart wolf algorithm are proved by the computing experiments on the 4 examples.","PeriodicalId":187056,"journal":{"name":"2017 2nd IEEE International Conference on Computational Intelligence and Applications (ICCIA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Binary smart wolf pack algorithm for uncertain bilevel knapsack problem\",\"authors\":\"Qi Yao, Xue Junjie, Wang Ying, Meng Xiangfei, Lv Maolong\",\"doi\":\"10.1109/CIAPP.2017.8167195\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To apply the smart wolf pack algorithm to solve the uncertain bilevel knapsack problem effectively, a binary smart wolf pack algorithm is designed. Firstly, the paper proposes an uncertain bilevel knapsack problem model by introducing uncertainty theory to the traditional bilevel knapsack problem model. Secondly, to solve the model of uncertain bilevel knapsack problem by the algorithm directly, we convert the uncertain bilevel knapsack problem model to an equivalent deterministic model. After that, a binary smart wolf pack algorithm based on the smart wolf pack algorithm is proposed, and the validity and efficiency of the binary smart wolf algorithm are proved by the computing experiments on the 4 examples.\",\"PeriodicalId\":187056,\"journal\":{\"name\":\"2017 2nd IEEE International Conference on Computational Intelligence and Applications (ICCIA)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 2nd IEEE International Conference on Computational Intelligence and Applications (ICCIA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIAPP.2017.8167195\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 2nd IEEE International Conference on Computational Intelligence and Applications (ICCIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIAPP.2017.8167195","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

为了将智能狼群算法有效地应用于求解不确定双层背包问题,设计了一种二元智能狼群算法。首先,将不确定性理论引入到传统的双层背包问题模型中,提出了一种不确定双层背包问题模型。其次,为了直接求解不确定双层背包问题的模型,将不确定双层背包问题模型转化为等效的确定性模型。在此基础上,提出了一种基于智能狼群算法的二元智能狼群算法,并通过4个算例的计算实验证明了二元智能狼算法的有效性和高效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Binary smart wolf pack algorithm for uncertain bilevel knapsack problem
To apply the smart wolf pack algorithm to solve the uncertain bilevel knapsack problem effectively, a binary smart wolf pack algorithm is designed. Firstly, the paper proposes an uncertain bilevel knapsack problem model by introducing uncertainty theory to the traditional bilevel knapsack problem model. Secondly, to solve the model of uncertain bilevel knapsack problem by the algorithm directly, we convert the uncertain bilevel knapsack problem model to an equivalent deterministic model. After that, a binary smart wolf pack algorithm based on the smart wolf pack algorithm is proposed, and the validity and efficiency of the binary smart wolf algorithm are proved by the computing experiments on the 4 examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信