面向回答质量判定的查询性能预测研究

Haggai Roitman, Shai Erera, Guy Feigenblat
{"title":"面向回答质量判定的查询性能预测研究","authors":"Haggai Roitman, Shai Erera, Guy Feigenblat","doi":"10.1145/3341981.3344219","DOIUrl":null,"url":null,"abstract":"We study a constrained retrieval setting in which either a single qualitative answer is provided as a response to a user-query or none. Given a user-query and the \"best\" answer that was retrieved from the underlying search engine, we wish to determine whether or not to accept it. To address this challenge, we propose an answer quality determination approach which leverages a novel set of answer-level query performance prediction (QPP) features, derived from a couple of recent discriminative QPP frameworks. Using various search benchmarks with both ad-hoc retrieval and non-factoid question answering (QA) tasks, we demonstrate the effectiveness of our approach.","PeriodicalId":173154,"journal":{"name":"Proceedings of the 2019 ACM SIGIR International Conference on Theory of Information Retrieval","volume":"196 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"A Study of Query Performance Prediction for Answer Quality Determination\",\"authors\":\"Haggai Roitman, Shai Erera, Guy Feigenblat\",\"doi\":\"10.1145/3341981.3344219\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study a constrained retrieval setting in which either a single qualitative answer is provided as a response to a user-query or none. Given a user-query and the \\\"best\\\" answer that was retrieved from the underlying search engine, we wish to determine whether or not to accept it. To address this challenge, we propose an answer quality determination approach which leverages a novel set of answer-level query performance prediction (QPP) features, derived from a couple of recent discriminative QPP frameworks. Using various search benchmarks with both ad-hoc retrieval and non-factoid question answering (QA) tasks, we demonstrate the effectiveness of our approach.\",\"PeriodicalId\":173154,\"journal\":{\"name\":\"Proceedings of the 2019 ACM SIGIR International Conference on Theory of Information Retrieval\",\"volume\":\"196 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2019 ACM SIGIR International Conference on Theory of Information Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3341981.3344219\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 ACM SIGIR International Conference on Theory of Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3341981.3344219","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

我们研究了一种约束检索设置,在这种设置中,要么提供单个定性答案作为对用户查询的响应,要么不提供。给定一个用户查询和从底层搜索引擎检索到的“最佳”答案,我们希望确定是否接受它。为了解决这一挑战,我们提出了一种答案质量确定方法,该方法利用了一组新的答案级查询性能预测(QPP)特征,这些特征来源于最近的几个判别性QPP框架。我们使用各种搜索基准,包括临时检索和非事实问答(QA)任务,证明了我们的方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Study of Query Performance Prediction for Answer Quality Determination
We study a constrained retrieval setting in which either a single qualitative answer is provided as a response to a user-query or none. Given a user-query and the "best" answer that was retrieved from the underlying search engine, we wish to determine whether or not to accept it. To address this challenge, we propose an answer quality determination approach which leverages a novel set of answer-level query performance prediction (QPP) features, derived from a couple of recent discriminative QPP frameworks. Using various search benchmarks with both ad-hoc retrieval and non-factoid question answering (QA) tasks, we demonstrate the effectiveness of our approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信