用两种方法建立俄罗斯联邦航空运输旅客周转率的回归模型

С. И. Носков, Ю. А. Бычков, К. С. Перфильева
{"title":"用两种方法建立俄罗斯联邦航空运输旅客周转率的回归模型","authors":"С. И. Носков, Ю. А. Бычков, К. С. Перфильева","doi":"10.35266/1999-7604-2023-1-36-42","DOIUrl":null,"url":null,"abstract":"The article describes a regressive mathematical model of passenger turnover in the air transport of the Russian Federation. The following are used as independent variables: the average flight costin the economy class of an aircraft per 1,000 km, the average monthly nominal accrued wages of mployees in a full range of organizations, the average fare for travel in a second-class carriage of an express unbranded long-distance train per 100 km of track, the working population. Model parameters are identified using two alternative methods of regression analysis: mixed estimation and maximum consistency between the calculated and actual values of the output variable. The constructed versions of the model fully correspond to the content meaning of the independent variables included in their composition and have high accuracy. To solve the problems, the researcher should select one of them according to their features, namely, either the tendency to minimize the disrepancies between the predicted and actual values of passenger traffic in the future or the desire to identify future trends in the indicator's dynamics, possibly, with the greater accuracy.","PeriodicalId":431138,"journal":{"name":"Proceedings in Cybernetics","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DEVELOPING A REGRESSION MODEL OF AIR TRANSPORT PASSENGER TURNOVER IN THE RUSSIAN FEDERATION WITH TWO ALTERNATIVE METHODS\",\"authors\":\"С. И. Носков, Ю. А. Бычков, К. С. Перфильева\",\"doi\":\"10.35266/1999-7604-2023-1-36-42\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The article describes a regressive mathematical model of passenger turnover in the air transport of the Russian Federation. The following are used as independent variables: the average flight costin the economy class of an aircraft per 1,000 km, the average monthly nominal accrued wages of mployees in a full range of organizations, the average fare for travel in a second-class carriage of an express unbranded long-distance train per 100 km of track, the working population. Model parameters are identified using two alternative methods of regression analysis: mixed estimation and maximum consistency between the calculated and actual values of the output variable. The constructed versions of the model fully correspond to the content meaning of the independent variables included in their composition and have high accuracy. To solve the problems, the researcher should select one of them according to their features, namely, either the tendency to minimize the disrepancies between the predicted and actual values of passenger traffic in the future or the desire to identify future trends in the indicator's dynamics, possibly, with the greater accuracy.\",\"PeriodicalId\":431138,\"journal\":{\"name\":\"Proceedings in Cybernetics\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings in Cybernetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35266/1999-7604-2023-1-36-42\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings in Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35266/1999-7604-2023-1-36-42","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文描述了俄罗斯联邦航空运输中旅客周转率的回归数学模型。使用以下变量作为自变量:每1000公里飞机经济舱的平均飞行成本,所有组织中员工的月平均名义应计工资,每100公里轨道上无品牌长途特快列车二等车厢的平均旅行费用,工作人口。模型参数的确定采用回归分析的两种替代方法:混合估计和输出变量的计算值与实际值之间的最大一致性。所构建的模型与自变量组成的内容含义完全对应,具有较高的准确率。为了解决这些问题,研究人员应该根据它们的特征选择其中之一,即倾向于尽量减少未来客运量预测值与实际值之间的差异,或者希望在指标的动态中识别未来趋势,可能更准确。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DEVELOPING A REGRESSION MODEL OF AIR TRANSPORT PASSENGER TURNOVER IN THE RUSSIAN FEDERATION WITH TWO ALTERNATIVE METHODS
The article describes a regressive mathematical model of passenger turnover in the air transport of the Russian Federation. The following are used as independent variables: the average flight costin the economy class of an aircraft per 1,000 km, the average monthly nominal accrued wages of mployees in a full range of organizations, the average fare for travel in a second-class carriage of an express unbranded long-distance train per 100 km of track, the working population. Model parameters are identified using two alternative methods of regression analysis: mixed estimation and maximum consistency between the calculated and actual values of the output variable. The constructed versions of the model fully correspond to the content meaning of the independent variables included in their composition and have high accuracy. To solve the problems, the researcher should select one of them according to their features, namely, either the tendency to minimize the disrepancies between the predicted and actual values of passenger traffic in the future or the desire to identify future trends in the indicator's dynamics, possibly, with the greater accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信