相似gan:使用相似度来放松生成对抗模型中的结构约束

Edward Collier, S. Mukhopadhyay
{"title":"相似gan:使用相似度来放松生成对抗模型中的结构约束","authors":"Edward Collier, S. Mukhopadhyay","doi":"10.1109/DICTA52665.2021.9647086","DOIUrl":null,"url":null,"abstract":"Recently, generative adversarial networks have performed extremely well in image translation. When translating images current models adhere to a strict structural symmetry between the input and output images. This paper, presents a technique for image translation involving a pair of image domains that allows the output image to go beyond the structural symmetry constraints imposed by the input. By using a siamese model as the discriminator, we condition the generator to produce images that are only similar, rather than identical to the input. We show experimentally that using this modified loss a generator can generate realistic images for complex problems that only loosely adhere to the structure of the input.","PeriodicalId":424950,"journal":{"name":"2021 Digital Image Computing: Techniques and Applications (DICTA)","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SimilarityGAN: Using Similarity to Loosen Structural Constraints in Generative Adversarial Models\",\"authors\":\"Edward Collier, S. Mukhopadhyay\",\"doi\":\"10.1109/DICTA52665.2021.9647086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, generative adversarial networks have performed extremely well in image translation. When translating images current models adhere to a strict structural symmetry between the input and output images. This paper, presents a technique for image translation involving a pair of image domains that allows the output image to go beyond the structural symmetry constraints imposed by the input. By using a siamese model as the discriminator, we condition the generator to produce images that are only similar, rather than identical to the input. We show experimentally that using this modified loss a generator can generate realistic images for complex problems that only loosely adhere to the structure of the input.\",\"PeriodicalId\":424950,\"journal\":{\"name\":\"2021 Digital Image Computing: Techniques and Applications (DICTA)\",\"volume\":\"63 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 Digital Image Computing: Techniques and Applications (DICTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DICTA52665.2021.9647086\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Digital Image Computing: Techniques and Applications (DICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA52665.2021.9647086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来,生成对抗网络在图像翻译中表现优异。在翻译图像时,当前的模型在输入和输出图像之间遵循严格的结构对称。本文提出了一种涉及一对图像域的图像转换技术,该技术允许输出图像超越由输入施加的结构对称约束。通过使用暹罗模型作为鉴别器,我们对生成器进行了条件调整,使其生成的图像只与输入的图像相似,而不是完全相同。我们通过实验证明,使用这种改进的损失生成器可以为复杂的问题生成真实的图像,这些问题只松散地遵循输入的结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SimilarityGAN: Using Similarity to Loosen Structural Constraints in Generative Adversarial Models
Recently, generative adversarial networks have performed extremely well in image translation. When translating images current models adhere to a strict structural symmetry between the input and output images. This paper, presents a technique for image translation involving a pair of image domains that allows the output image to go beyond the structural symmetry constraints imposed by the input. By using a siamese model as the discriminator, we condition the generator to produce images that are only similar, rather than identical to the input. We show experimentally that using this modified loss a generator can generate realistic images for complex problems that only loosely adhere to the structure of the input.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信