一种用于光学字符识别的快速鲁棒自适应文档图像二值化方法

Jean-Luc Bloechle, J. Hennebert, Christophe Gisler
{"title":"一种用于光学字符识别的快速鲁棒自适应文档图像二值化方法","authors":"Jean-Luc Bloechle, J. Hennebert, Christophe Gisler","doi":"10.1145/3573128.3609354","DOIUrl":null,"url":null,"abstract":"Optical Character Recognition (OCR) from document photos taken by cell phones is a challenging task. Most OCR methods require prior binarization of the image, which can be difficult to achieve when documents are captured with various mobile devices in unknown lighting conditions. For example, shadows cast by the camera or the camera holder on a hard copy can jeopardize the binarization process and hinder the next OCR step. In the case of highly uneven illumination, binarization methods using global thresholding simply fail, and state-of-the-art adaptive algorithms often deliver unsatisfactory results. In this paper, we present a new binarization algorithm using two complementary local adaptive passes and taking advantage of the color components to improve results over current image binarization methods. The proposed approach gave remarkable results at the DocEng'22 competition on the binarization of photographed documents.","PeriodicalId":310776,"journal":{"name":"Proceedings of the ACM Symposium on Document Engineering 2023","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"YinYang, a Fast and Robust Adaptive Document Image Binarization for Optical Character Recognition\",\"authors\":\"Jean-Luc Bloechle, J. Hennebert, Christophe Gisler\",\"doi\":\"10.1145/3573128.3609354\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Optical Character Recognition (OCR) from document photos taken by cell phones is a challenging task. Most OCR methods require prior binarization of the image, which can be difficult to achieve when documents are captured with various mobile devices in unknown lighting conditions. For example, shadows cast by the camera or the camera holder on a hard copy can jeopardize the binarization process and hinder the next OCR step. In the case of highly uneven illumination, binarization methods using global thresholding simply fail, and state-of-the-art adaptive algorithms often deliver unsatisfactory results. In this paper, we present a new binarization algorithm using two complementary local adaptive passes and taking advantage of the color components to improve results over current image binarization methods. The proposed approach gave remarkable results at the DocEng'22 competition on the binarization of photographed documents.\",\"PeriodicalId\":310776,\"journal\":{\"name\":\"Proceedings of the ACM Symposium on Document Engineering 2023\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ACM Symposium on Document Engineering 2023\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3573128.3609354\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM Symposium on Document Engineering 2023","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3573128.3609354","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

手机拍摄的文件照片的光学字符识别(OCR)是一项具有挑战性的任务。大多数OCR方法需要对图像进行事先二值化,当在未知光照条件下使用各种移动设备捕获文档时,这很难实现。例如,相机或相机支架在硬拷贝上的阴影可能会危及二值化过程并阻碍下一个OCR步骤。在光照高度不均匀的情况下,使用全局阈值的二值化方法会失败,而最先进的自适应算法通常会提供令人不满意的结果。在本文中,我们提出了一种新的二值化算法,该算法使用两个互补的局部自适应通道,并利用颜色分量来改善当前图像二值化方法的结果。该方法在DocEng’22摄影文档二值化竞赛中取得了显著的成果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
YinYang, a Fast and Robust Adaptive Document Image Binarization for Optical Character Recognition
Optical Character Recognition (OCR) from document photos taken by cell phones is a challenging task. Most OCR methods require prior binarization of the image, which can be difficult to achieve when documents are captured with various mobile devices in unknown lighting conditions. For example, shadows cast by the camera or the camera holder on a hard copy can jeopardize the binarization process and hinder the next OCR step. In the case of highly uneven illumination, binarization methods using global thresholding simply fail, and state-of-the-art adaptive algorithms often deliver unsatisfactory results. In this paper, we present a new binarization algorithm using two complementary local adaptive passes and taking advantage of the color components to improve results over current image binarization methods. The proposed approach gave remarkable results at the DocEng'22 competition on the binarization of photographed documents.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信