原型算法:时间序列图源空间相似性计算中的数链特征

Ziyang Weng, Shuhao Wang, W. Yan, Yinger Liang
{"title":"原型算法:时间序列图源空间相似性计算中的数链特征","authors":"Ziyang Weng, Shuhao Wang, W. Yan, Yinger Liang","doi":"10.1109/QRS-C57518.2022.00102","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a method to calculate spatial semantic similarity based on sampled same-area time-series images. First, we preprocess the corpus data containing spatial information, then we project the coordinates in the preprocessed corpus data to obtain the actual spatial ranges, then we determine the contextual annotations of geographical feature gestures in the time-series images and perform comparison sampling, and finally we calculate the similarity between the coordinates of the overall same-area time-series image geo-corpus The similarity is evaluated for each two nodes in the set of the overall same-region geo-serial corpus. This paper identifies the causes of data noise and interpretation bias arising from the migration process of geographic data in time-series images, which effectively complements the traditional natural semantic similarity model and improves the effectiveness of intelligent geographic information retrieval and ancient landscape painting verification.","PeriodicalId":183728,"journal":{"name":"2022 IEEE 22nd International Conference on Software Quality, Reliability, and Security Companion (QRS-C)","volume":"192 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prototype Algorithm: Number Chain Features in Spatial Similarity Calculation of Time-Series Graph Sources\",\"authors\":\"Ziyang Weng, Shuhao Wang, W. Yan, Yinger Liang\",\"doi\":\"10.1109/QRS-C57518.2022.00102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a method to calculate spatial semantic similarity based on sampled same-area time-series images. First, we preprocess the corpus data containing spatial information, then we project the coordinates in the preprocessed corpus data to obtain the actual spatial ranges, then we determine the contextual annotations of geographical feature gestures in the time-series images and perform comparison sampling, and finally we calculate the similarity between the coordinates of the overall same-area time-series image geo-corpus The similarity is evaluated for each two nodes in the set of the overall same-region geo-serial corpus. This paper identifies the causes of data noise and interpretation bias arising from the migration process of geographic data in time-series images, which effectively complements the traditional natural semantic similarity model and improves the effectiveness of intelligent geographic information retrieval and ancient landscape painting verification.\",\"PeriodicalId\":183728,\"journal\":{\"name\":\"2022 IEEE 22nd International Conference on Software Quality, Reliability, and Security Companion (QRS-C)\",\"volume\":\"192 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 22nd International Conference on Software Quality, Reliability, and Security Companion (QRS-C)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/QRS-C57518.2022.00102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 22nd International Conference on Software Quality, Reliability, and Security Companion (QRS-C)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/QRS-C57518.2022.00102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于采样的同面积时间序列图像的空间语义相似度计算方法。首先对包含空间信息的语料库数据进行预处理,然后对预处理后的语料库数据进行坐标投影,得到实际的空间范围,然后确定时间序列图像中地理特征手势的语境标注,并进行对比采样;最后计算整体同区域时间序列图像地理序列语料库坐标之间的相似度,对整体同区域地理序列语料库集合中的每两个节点进行相似度评估。本文识别了时间序列图像中地理数据迁移过程中产生数据噪声和解译偏差的原因,有效补充了传统的自然语义相似度模型,提高了智能地理信息检索和古代山水画验证的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prototype Algorithm: Number Chain Features in Spatial Similarity Calculation of Time-Series Graph Sources
In this paper, we propose a method to calculate spatial semantic similarity based on sampled same-area time-series images. First, we preprocess the corpus data containing spatial information, then we project the coordinates in the preprocessed corpus data to obtain the actual spatial ranges, then we determine the contextual annotations of geographical feature gestures in the time-series images and perform comparison sampling, and finally we calculate the similarity between the coordinates of the overall same-area time-series image geo-corpus The similarity is evaluated for each two nodes in the set of the overall same-region geo-serial corpus. This paper identifies the causes of data noise and interpretation bias arising from the migration process of geographic data in time-series images, which effectively complements the traditional natural semantic similarity model and improves the effectiveness of intelligent geographic information retrieval and ancient landscape painting verification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信