基于超高频s型和三角高阶神经网络的数据模式识别

{"title":"基于超高频s型和三角高阶神经网络的数据模式识别","authors":"","doi":"10.4018/978-1-7998-3563-9.ch011","DOIUrl":null,"url":null,"abstract":"This chapter develops a new nonlinear model, ultra high frequency sigmoid and trigonometric higher order neural networks (UGT-HONN), for data pattern recognition. UGT-HONN includes ultra high frequency sigmoid and sine function higher order neural networks (UGS-HONN) and ultra high frequency sigmoid and cosine functions higher order neural networks (UGC-HONN). UGS-HONN and UGC-HONN models are used to recognition data patterns. Results show that UGS-HONN and UGC-HONN models are better than other polynomial higher order neural network (PHONN) and trigonometric higher order neural network (THONN) models, since UGS-HONN and UGC-HONN models can recognize data pattern with error approaching 10-6.","PeriodicalId":236860,"journal":{"name":"Emerging Capabilities and Applications of Artificial Higher Order Neural Networks","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data Pattern Recognition Based on Ultra-High Frequency Sigmoid and Trigonometric Higher Order Neural Networks\",\"authors\":\"\",\"doi\":\"10.4018/978-1-7998-3563-9.ch011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This chapter develops a new nonlinear model, ultra high frequency sigmoid and trigonometric higher order neural networks (UGT-HONN), for data pattern recognition. UGT-HONN includes ultra high frequency sigmoid and sine function higher order neural networks (UGS-HONN) and ultra high frequency sigmoid and cosine functions higher order neural networks (UGC-HONN). UGS-HONN and UGC-HONN models are used to recognition data patterns. Results show that UGS-HONN and UGC-HONN models are better than other polynomial higher order neural network (PHONN) and trigonometric higher order neural network (THONN) models, since UGS-HONN and UGC-HONN models can recognize data pattern with error approaching 10-6.\",\"PeriodicalId\":236860,\"journal\":{\"name\":\"Emerging Capabilities and Applications of Artificial Higher Order Neural Networks\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Emerging Capabilities and Applications of Artificial Higher Order Neural Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/978-1-7998-3563-9.ch011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Emerging Capabilities and Applications of Artificial Higher Order Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/978-1-7998-3563-9.ch011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本章发展了一种新的用于数据模式识别的非线性模型,超高频s型和三角高阶神经网络(UGT-HONN)。UGT-HONN包括超高频s型和正弦函数高阶神经网络(UGS-HONN)和超高频s型和余弦函数高阶神经网络(UGC-HONN)。采用UGS-HONN和UGC-HONN模型对数据模式进行识别。结果表明,UGS-HONN和UGC-HONN模型的数据模式识别误差接近10-6,优于其他多项式高阶神经网络(PHONN)和三角高阶神经网络(THONN)模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Data Pattern Recognition Based on Ultra-High Frequency Sigmoid and Trigonometric Higher Order Neural Networks
This chapter develops a new nonlinear model, ultra high frequency sigmoid and trigonometric higher order neural networks (UGT-HONN), for data pattern recognition. UGT-HONN includes ultra high frequency sigmoid and sine function higher order neural networks (UGS-HONN) and ultra high frequency sigmoid and cosine functions higher order neural networks (UGC-HONN). UGS-HONN and UGC-HONN models are used to recognition data patterns. Results show that UGS-HONN and UGC-HONN models are better than other polynomial higher order neural network (PHONN) and trigonometric higher order neural network (THONN) models, since UGS-HONN and UGC-HONN models can recognize data pattern with error approaching 10-6.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信