基于高斯混合模型和神经网络的电视节目类型自动分类

M. Montagnuolo, A. Messina
{"title":"基于高斯混合模型和神经网络的电视节目类型自动分类","authors":"M. Montagnuolo, A. Messina","doi":"10.1109/DEXA.2007.92","DOIUrl":null,"url":null,"abstract":"In this paper we investigate the problem of automatically identifying the genre of TV programmes. The approach here proposed is based on two foundations: Gaussian mixture models (GMMs) and artificial neural networks (ANNs). Firstly, we use Gaussian mixtures to model the probability distributions of low-level audiovisual features. Secondly, we use the parameters of each mixture model as new feature vectors. Finally, we train a multilayer perceptron (MLP), using GMM parameters as input data, to identify seven television programme genres. We evaluated the effectiveness of the proposed approach testing our system on a large set of data, summing up to more than 100 hours of broadcasted programmes.","PeriodicalId":314834,"journal":{"name":"18th International Workshop on Database and Expert Systems Applications (DEXA 2007)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Automatic Genre Classification of TV Programmes Using Gaussian Mixture Models and Neural Networks\",\"authors\":\"M. Montagnuolo, A. Messina\",\"doi\":\"10.1109/DEXA.2007.92\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we investigate the problem of automatically identifying the genre of TV programmes. The approach here proposed is based on two foundations: Gaussian mixture models (GMMs) and artificial neural networks (ANNs). Firstly, we use Gaussian mixtures to model the probability distributions of low-level audiovisual features. Secondly, we use the parameters of each mixture model as new feature vectors. Finally, we train a multilayer perceptron (MLP), using GMM parameters as input data, to identify seven television programme genres. We evaluated the effectiveness of the proposed approach testing our system on a large set of data, summing up to more than 100 hours of broadcasted programmes.\",\"PeriodicalId\":314834,\"journal\":{\"name\":\"18th International Workshop on Database and Expert Systems Applications (DEXA 2007)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"18th International Workshop on Database and Expert Systems Applications (DEXA 2007)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DEXA.2007.92\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"18th International Workshop on Database and Expert Systems Applications (DEXA 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DEXA.2007.92","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

本文研究了电视节目类型的自动识别问题。本文提出的方法基于两个基础:高斯混合模型(GMMs)和人工神经网络(ann)。首先,我们使用高斯混合模型对低阶视听特征的概率分布进行建模。其次,我们使用每个混合模型的参数作为新的特征向量。最后,我们训练了一个多层感知器(MLP),使用GMM参数作为输入数据,来识别七种电视节目类型。我们评估了建议方法的有效性,在大量数据上测试了我们的系统,总计超过100小时的广播节目。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic Genre Classification of TV Programmes Using Gaussian Mixture Models and Neural Networks
In this paper we investigate the problem of automatically identifying the genre of TV programmes. The approach here proposed is based on two foundations: Gaussian mixture models (GMMs) and artificial neural networks (ANNs). Firstly, we use Gaussian mixtures to model the probability distributions of low-level audiovisual features. Secondly, we use the parameters of each mixture model as new feature vectors. Finally, we train a multilayer perceptron (MLP), using GMM parameters as input data, to identify seven television programme genres. We evaluated the effectiveness of the proposed approach testing our system on a large set of data, summing up to more than 100 hours of broadcasted programmes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信