非线性信道中FTN信令接收机:联合信道估计与同步

Jean-Alain Lucciardi, N. Thomas, M. Boucheret, C. Poulliat, G. Mesnager
{"title":"非线性信道中FTN信令接收机:联合信道估计与同步","authors":"Jean-Alain Lucciardi, N. Thomas, M. Boucheret, C. Poulliat, G. Mesnager","doi":"10.1109/PIMRC.2017.8292221","DOIUrl":null,"url":null,"abstract":"In order to increase the capacity of future satellite communication systems, faster-than-Nyquist (FTN) signaling is increasingly considered. The gain in terms of transmission rate is obtained at the price of significant intersymbol interference (ISI) introduction. To benefit from an improved spectral efficiency (SE), many iterative detectors have already been investigated, demonstrating the interest of such a waveform in linear and non linear channels. A thorny point in FTN signaling remains its synchronization since the usual algorithms considered in the DVB-S2X standard cannot be applied on this waveform without significant loss on the performance. This paper proposes a synchronization scheme for FTN signaling in a satellite context. It is based on a Volterra decomposition of the received signal in order to fit both with linearized and non-linearized amplifiers which can be found in the satellite payload. Two steps, initialization and tracking are considered, based on training sequences fulfilling the DVB-S2Xs frames requirements. After start of sequence detection and frequency offset correction, the channel estimation is used for time offset issue in the two proposed schemes. Their performance are compared to the performance of a perfect synchronized detection.","PeriodicalId":397107,"journal":{"name":"2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Receiver for FTN signaling in non-linear channel: Joint channel estimation and synchronization\",\"authors\":\"Jean-Alain Lucciardi, N. Thomas, M. Boucheret, C. Poulliat, G. Mesnager\",\"doi\":\"10.1109/PIMRC.2017.8292221\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to increase the capacity of future satellite communication systems, faster-than-Nyquist (FTN) signaling is increasingly considered. The gain in terms of transmission rate is obtained at the price of significant intersymbol interference (ISI) introduction. To benefit from an improved spectral efficiency (SE), many iterative detectors have already been investigated, demonstrating the interest of such a waveform in linear and non linear channels. A thorny point in FTN signaling remains its synchronization since the usual algorithms considered in the DVB-S2X standard cannot be applied on this waveform without significant loss on the performance. This paper proposes a synchronization scheme for FTN signaling in a satellite context. It is based on a Volterra decomposition of the received signal in order to fit both with linearized and non-linearized amplifiers which can be found in the satellite payload. Two steps, initialization and tracking are considered, based on training sequences fulfilling the DVB-S2Xs frames requirements. After start of sequence detection and frequency offset correction, the channel estimation is used for time offset issue in the two proposed schemes. Their performance are compared to the performance of a perfect synchronized detection.\",\"PeriodicalId\":397107,\"journal\":{\"name\":\"2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PIMRC.2017.8292221\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PIMRC.2017.8292221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

为了提高未来卫星通信系统的容量,比奈奎斯特(FTN)更快的信号被越来越多地考虑。传输速率方面的增益是以引入显著的码间干扰(ISI)为代价获得的。为了提高频谱效率(SE),许多迭代检测器已经被研究,证明了这种波形在线性和非线性信道中的兴趣。FTN信令的一个棘手的问题仍然是它的同步,因为DVB-S2X标准中考虑的通常算法不能在没有显著性能损失的情况下应用于这种波形。提出了一种卫星环境下FTN信令的同步方案。它是基于接收信号的沃尔泰拉分解,以适应可以在卫星有效载荷中找到的线性化和非线性化放大器。基于满足DVB-S2Xs帧要求的训练序列,考虑初始化和跟踪两个步骤。在启动序列检测和频率偏移校正后,两种方案都采用信道估计来解决时间偏移问题。将它们的性能与完美同步检测的性能进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Receiver for FTN signaling in non-linear channel: Joint channel estimation and synchronization
In order to increase the capacity of future satellite communication systems, faster-than-Nyquist (FTN) signaling is increasingly considered. The gain in terms of transmission rate is obtained at the price of significant intersymbol interference (ISI) introduction. To benefit from an improved spectral efficiency (SE), many iterative detectors have already been investigated, demonstrating the interest of such a waveform in linear and non linear channels. A thorny point in FTN signaling remains its synchronization since the usual algorithms considered in the DVB-S2X standard cannot be applied on this waveform without significant loss on the performance. This paper proposes a synchronization scheme for FTN signaling in a satellite context. It is based on a Volterra decomposition of the received signal in order to fit both with linearized and non-linearized amplifiers which can be found in the satellite payload. Two steps, initialization and tracking are considered, based on training sequences fulfilling the DVB-S2Xs frames requirements. After start of sequence detection and frequency offset correction, the channel estimation is used for time offset issue in the two proposed schemes. Their performance are compared to the performance of a perfect synchronized detection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信