WRF模型常规观测数据的人工神经网络同化

Shijin Yuan, Bo Shi, Bin Mu
{"title":"WRF模型常规观测数据的人工神经网络同化","authors":"Shijin Yuan, Bo Shi, Bin Mu","doi":"10.1145/3409073.3409097","DOIUrl":null,"url":null,"abstract":"In this paper, artificial neural network(ANN) are introduced to data assimilation for WRF model, which is a mesoscale complex model. A particle swarm optimization optimized Multilayer Perception data assimilation (MLP-PSO-DA) model is proposed in order to emulate the ensemble square root filter (EnSRF) analysis. Multilayer Perception is employed and the optimal parameter configurations are automatic obtained by particle swarm optimization (PSO) algorithm. The MLP-PSO-DA is integrated with WRF modeling system for assimilation cycle. The EnSRF analysis fields from July of 2004, 2005 and 2006 are taking as samples to train the model. The ANN-based data assimilation is conducted at July, 2007 with interval of 6h. The prognostic variables analysis fields of MLP-PSO-DA and EnSRF are very similar and the difference between two method is within a small scope. The results prove the effectiveness of MLP-PSO-DA. Meanwhile, the MLP-PSO-DA model has great advantage to speed up the DA process.","PeriodicalId":229746,"journal":{"name":"Proceedings of the 2020 5th International Conference on Machine Learning Technologies","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data Assimilation by Artificial Neural Network using Conventional Observation for WRF Model\",\"authors\":\"Shijin Yuan, Bo Shi, Bin Mu\",\"doi\":\"10.1145/3409073.3409097\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, artificial neural network(ANN) are introduced to data assimilation for WRF model, which is a mesoscale complex model. A particle swarm optimization optimized Multilayer Perception data assimilation (MLP-PSO-DA) model is proposed in order to emulate the ensemble square root filter (EnSRF) analysis. Multilayer Perception is employed and the optimal parameter configurations are automatic obtained by particle swarm optimization (PSO) algorithm. The MLP-PSO-DA is integrated with WRF modeling system for assimilation cycle. The EnSRF analysis fields from July of 2004, 2005 and 2006 are taking as samples to train the model. The ANN-based data assimilation is conducted at July, 2007 with interval of 6h. The prognostic variables analysis fields of MLP-PSO-DA and EnSRF are very similar and the difference between two method is within a small scope. The results prove the effectiveness of MLP-PSO-DA. Meanwhile, the MLP-PSO-DA model has great advantage to speed up the DA process.\",\"PeriodicalId\":229746,\"journal\":{\"name\":\"Proceedings of the 2020 5th International Conference on Machine Learning Technologies\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2020 5th International Conference on Machine Learning Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3409073.3409097\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 5th International Conference on Machine Learning Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3409073.3409097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文将人工神经网络(ANN)引入到WRF模型这一中尺度复杂模型的数据同化中。为了模拟集成平方根滤波(EnSRF)分析,提出了一种粒子群优化的多层感知数据同化(MLP-PSO-DA)模型。采用多层感知技术,通过粒子群优化算法自动获得最优参数配置。MLP-PSO-DA与WRF同化循环建模系统集成。以2004年7月、2005年7月和2006年7月的enrf分析场为样本进行模型训练。基于人工神经网络的数据同化于2007年7月进行,间隔为6h。MLP-PSO-DA和enrf的预后变量分析领域非常相似,两者之间的差异很小。结果证明了MLP-PSO-DA的有效性。同时,MLP-PSO-DA模型在加速数据分析过程方面具有很大的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Data Assimilation by Artificial Neural Network using Conventional Observation for WRF Model
In this paper, artificial neural network(ANN) are introduced to data assimilation for WRF model, which is a mesoscale complex model. A particle swarm optimization optimized Multilayer Perception data assimilation (MLP-PSO-DA) model is proposed in order to emulate the ensemble square root filter (EnSRF) analysis. Multilayer Perception is employed and the optimal parameter configurations are automatic obtained by particle swarm optimization (PSO) algorithm. The MLP-PSO-DA is integrated with WRF modeling system for assimilation cycle. The EnSRF analysis fields from July of 2004, 2005 and 2006 are taking as samples to train the model. The ANN-based data assimilation is conducted at July, 2007 with interval of 6h. The prognostic variables analysis fields of MLP-PSO-DA and EnSRF are very similar and the difference between two method is within a small scope. The results prove the effectiveness of MLP-PSO-DA. Meanwhile, the MLP-PSO-DA model has great advantage to speed up the DA process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信