{"title":"新型磁性细胞-支架结构在外加和不外加磁场的作用下促进干细胞成骨和新骨的形成","authors":"Yang Xia, Jianfei Sun, Feimin Zhang, N. Gu, H. Xu","doi":"10.1109/IMBIOC.2019.8777770","DOIUrl":null,"url":null,"abstract":"Superparamagnetic iron oxide nanoparticles (IONPs) are promising bioactive additives to fabricate magnetic scaffolds for bone tissue engineering. Their similarity to macromolecules and many unique properties indicate that functional nanoparticles have promising potential for the modification and improvement of traditional scaffolds to obtain excellent biocompatibility, tunable stiffness, physical sensing, and stimulus-response capabilities. Furthermore, magnetic stimulations from static magnetic fields (SMFs) and electromagnetic fields (EMFs) can also substantially improve bone repair and regeneration. Therefore, the objectives of this study were to: (1) develop a novel magnetic IONP incorporated scaffold for bone tissue engineering, and (2) investigate the effects of IONP-incorporation and SMF application on the proliferation, osteogenic differentiation and bone mineral synthesis of stem cells like human dental pulp stem cells (hDPSCs) seeded on IONP-incorporated scaffold for the first time. Our results demonstrate that the novel CPC functionalized with IONPs is promising to promote osteoinduction and bone regeneration.","PeriodicalId":171472,"journal":{"name":"2019 IEEE MTT-S International Microwave Biomedical Conference (IMBioC)","volume":"165 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Novel Magnetic Cell-Scaffold Construct with and without Magnetic Field Enhanced Osteogenesis of Stem Cells and Formation of new bone\",\"authors\":\"Yang Xia, Jianfei Sun, Feimin Zhang, N. Gu, H. Xu\",\"doi\":\"10.1109/IMBIOC.2019.8777770\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Superparamagnetic iron oxide nanoparticles (IONPs) are promising bioactive additives to fabricate magnetic scaffolds for bone tissue engineering. Their similarity to macromolecules and many unique properties indicate that functional nanoparticles have promising potential for the modification and improvement of traditional scaffolds to obtain excellent biocompatibility, tunable stiffness, physical sensing, and stimulus-response capabilities. Furthermore, magnetic stimulations from static magnetic fields (SMFs) and electromagnetic fields (EMFs) can also substantially improve bone repair and regeneration. Therefore, the objectives of this study were to: (1) develop a novel magnetic IONP incorporated scaffold for bone tissue engineering, and (2) investigate the effects of IONP-incorporation and SMF application on the proliferation, osteogenic differentiation and bone mineral synthesis of stem cells like human dental pulp stem cells (hDPSCs) seeded on IONP-incorporated scaffold for the first time. Our results demonstrate that the novel CPC functionalized with IONPs is promising to promote osteoinduction and bone regeneration.\",\"PeriodicalId\":171472,\"journal\":{\"name\":\"2019 IEEE MTT-S International Microwave Biomedical Conference (IMBioC)\",\"volume\":\"165 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE MTT-S International Microwave Biomedical Conference (IMBioC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IMBIOC.2019.8777770\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE MTT-S International Microwave Biomedical Conference (IMBioC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMBIOC.2019.8777770","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Novel Magnetic Cell-Scaffold Construct with and without Magnetic Field Enhanced Osteogenesis of Stem Cells and Formation of new bone
Superparamagnetic iron oxide nanoparticles (IONPs) are promising bioactive additives to fabricate magnetic scaffolds for bone tissue engineering. Their similarity to macromolecules and many unique properties indicate that functional nanoparticles have promising potential for the modification and improvement of traditional scaffolds to obtain excellent biocompatibility, tunable stiffness, physical sensing, and stimulus-response capabilities. Furthermore, magnetic stimulations from static magnetic fields (SMFs) and electromagnetic fields (EMFs) can also substantially improve bone repair and regeneration. Therefore, the objectives of this study were to: (1) develop a novel magnetic IONP incorporated scaffold for bone tissue engineering, and (2) investigate the effects of IONP-incorporation and SMF application on the proliferation, osteogenic differentiation and bone mineral synthesis of stem cells like human dental pulp stem cells (hDPSCs) seeded on IONP-incorporated scaffold for the first time. Our results demonstrate that the novel CPC functionalized with IONPs is promising to promote osteoinduction and bone regeneration.